## Powertrain Blockset™ Reference

# MATLAB&SIMULINK®



**R**2018**a** 

### **How to Contact MathWorks**



 $\mathbf{X}$ 

| Latest news:        | www.mathworks.com                    |
|---------------------|--------------------------------------|
| Sales and services: | www.mathworks.com/sales_and_services |
| User community:     | www.mathworks.com/matlabcentral      |
| Technical support:  | www.mathworks.com/support/contact_us |
| Phone:              | 508-647-7000                         |

The MathWorks, Inc. 3 Apple Hill Drive Natick. MA 01760-2098

Powertrain Blockset ™ Reference

© COPYRIGHT 2016-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software or documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

#### Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

#### Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

#### **Revision History**

| October 2016   | Online only | New for Version 1.0 (Release 2016b+)    |
|----------------|-------------|-----------------------------------------|
| March 2017     | Online only | Revised for Version 1.1 (Release 2017a) |
| September 2017 | Online only | Revised for Version 1.2 (Release 2017b) |
| March 2018     | Online only | Revised for Version 1.3 (Release 2018a) |

## Contents



## Drivetrain Blocks — Alphabetical List

### **Rotational Inertia**

Ideal mechanical rotational inertia Library: Drivetrain / Couplings

### Description

The Rotational Inertia block implements an ideal mechanical rotational inertia.

RTrq

CErq

=) Spd

### Ports

### Input

### RTrq — Input torque scalar

Applied input drive shaft torque, in N·m.

#### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### **CTrq — Load torque** scalar

Load drive shaft torque, in N·m.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### **R** — Angular velocity and torque two-way connector port

Angular velocity in rad/s. Torque is in N·m.

To create this port, for **Port Configuration**, select Two-way connection.

**Inertia — Input** scalar

Additional inertia input, in kg\*m^2.

#### Dependencies

To create this port, select the **External inertia input** parameter.

### Output

### Spd — Drive shaft speed

scalar

Angular drive shaft speed, in rad/s.

#### Dependencies

To create this port, for **Port Configuration**, select Simulink.

#### C — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

#### Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

### **Parameters**

**Block Options** 

Port Configuration — Specify configuration
Simulink (default) | Two-way connection

Specify the port configuration.

Specifying Simulink creates these ports:

- RTrq
- CTrq
- Spd

Specifying Two-way connection creates these ports:

- R
- C

Rotational inertia, J — Inertia

scalar

Rotational inertia, in kg\*m^2.

**Torsional damping, b — Damping** scalar

Torsional damping, in N·m· s/rad.

### Initial velocity, omega\_o - Angular scalar

Initial angular velocity, in rad/s.

### External inertia input – Input inertia

off (default) | on

Select to create an input port for additional inertia.

### See Also

Split Torsional Compliance | Torsional Compliance

### Introduced in R2017a

### **Split Torsional Compliance**

Split torsional coupler Library: Drivetrain / Couplings



### Description

The Split Torsional Compliance block implements parallel spring-damper coupling between shafts. You can specify the type of coupling by selecting one of the **Coupling Configuration** parameters:

- Shaft split Single input shaft coupled to two output shafts
- Shaft merge Two input shafts coupled to a single output shaft

In fuel economy and emissions studies, you can use the Split Torsional Compliance block to model mechanical rotational compliance between common driveline elements such as motors, planetary gears, and clutches. For example, use the Shaft split configuration to couple a motor and two planetary gear sets. Use the Shaft merge configuration to couple a dual clutch transmission to an output shaft.

### **Shaft Split**

For the Shaft split configuration, the block implements this schematic and equations.



$$\begin{split} T_{in} &= -(\omega_{in} - \omega_{lout})b_1 - (\omega_{in} - \omega_{2out})b_2 - \theta_1 k_1 - \theta_2 k_2 \\ T_{lout} &= (\omega_{in} - \omega_{lout})b_1 + \theta_1 k_1 \\ T_{2out} &= (\omega_{in} - \omega_{2out})b_2 + \theta_2 k_2 \end{split}$$

$$\dot{\theta}_1 = (\omega_{in} - \omega_{lout})$$
$$\dot{\theta}_2 = (\omega_{in} - \omega_{2out})$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

| T <sub>in</sub>                               | Resulting applied input reaction torque         |
|-----------------------------------------------|-------------------------------------------------|
| $\omega_{in}$                                 | Input shaft rotational velocity                 |
| T <sub>1out</sub>                             | Resulting applied torque to first output shaft  |
| $\omega_{1out}$                               | First output shaft rotational velocity          |
| T <sub>2out</sub>                             | Resulting applied torque to second output shaft |
| $\omega_{2out}$                               | Second output shaft rotational velocity         |
| <i>b</i> <sub>1</sub> , <i>b</i> <sub>2</sub> | First, second shaft viscous damping             |
|                                               |                                                 |

 $k_1, k_2$  First, second shaft torsional stiffness

### **Shaft Merge**

For the Shaft merge configuration, the block implements this schematic and equations.



$$T_{out} = (-\omega_{out} + \omega_{lin})b_l + (-\omega_{out} + \omega_{2in})b_2 + \theta_1k_l + \theta_2k_2$$
  

$$T_{lout} = (\omega_{out} - \omega_{lin})b_l - \theta_lk_l$$
  

$$T_{2out} = (\omega_{out} - \omega_{2in})b_2 - \theta_2k_2$$

$$\dot{\theta}_{1} = (\omega_{1in} - \omega_{out})$$
$$\dot{\theta}_{2} = (\omega_{2in} - \omega_{out})$$

To account for frequency-dependent damping, both damping terms incorporate a low-pass filter.

The equations use these variables.

| T <sub>out</sub> | Resulting applied output torque  |  |  |
|------------------|----------------------------------|--|--|
| $\omega_{out}$   | Output shaft rotational velocity |  |  |

| $T_{1in}$                                     | Resulting reaction torque to first input shaft  |
|-----------------------------------------------|-------------------------------------------------|
| $\omega_{1in}$                                | First input shaft rotational velocity           |
| $T_{2in}$                                     | Resulting reaction torque to second input shaft |
| $\omega_{2in}$                                | Second input shaft rotational velocity          |
| <b>b</b> <sub>1</sub> , <b>b</b> <sub>2</sub> | First, second shaft viscous damping             |
| k <sub>1</sub> , k <sub>2</sub>               | First, second shaft torsional stiffness         |

### Ports

### Input

### RSpd — Input shaft speed

scalar

Input shaft rotational velocity,  $\omega_{in}$ , in rad/s.

### Dependencies

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

### C1Spd — First output shaft speed

scalar

First output shaft rotational velocity,  $\omega_{1out}$ , in rad/s.

### Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft split

### C2Spd — Second output shaft speed scalar

Second output shaft rotational velocity,  $\omega_{2out}$ , in rad/s.

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

### CSpd — Input speed

scalar

Output shaft rotational velocity,  $\omega_{out}$ , in rad/s.

#### Dependencies

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft merge

### R1Spd — First input shaft speed

scalar

First input shaft rotational velocity,  $\omega_{1in}$ , in rad/s.

#### Dependencies

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft merge

### R2Spd — Second input shaft speed

scalar

Second input shaft rotational velocity,  $\omega_{2in}$ , in rad/s.

### Dependencies

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft merge

#### **R** — Input shaft angular velocity and torque

two-way connector port

Input shaft angular velocity,  $\omega_{in}$ , in rad/s and torque,  $T_{in}$ , in N·m.

#### Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

#### R1 — First input shaft angular velocity and torque

two-way connector port

First input shaft angular velocity,  $\omega_{1in}$ , in rad/s and torque,  $T_{1in}$ , in N·m.

#### Dependencies

To create this port, select:

- Port Configuration > Two-way connection
- Coupling Configuration>Shaft merge

#### R2 — Second input shaft angular velocity and torque

two-way connector port

Second input shaft angular velocity,  $\omega_{2in}$ , in rad/s and torque,  $T_{2in}$ , in N·m.

#### Dependencies

To create this port, select:

- Port Configuration > Two-way connection
- Coupling Configuration>Shaft merge

### Output

**RTrq — Input shaft torque** scalar

Input shaft torque,  $T_{in}$ , in N·m.

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

### C1Trq — First output shaft torque

scalar

First output shaft torque,  $T_{1out}$ , in N·m.

### Dependencies

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

### C2Trq — Second output shaft torque scalar

Second output shaft torque,  $T_{2out}$ , in N·m.

### Dependencies

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft split

### CTrq — Output shaft torque

scalar

Output shaft torque,  $T_{out}$ , in N·m.

### Dependencies

To create this port, set both of these parameters:

- **Port Configuration** to Simulink
- Coupling Configuration to Shaft merge

### R1Trq — First input shaft torque

scalar

First input shaft torque,  $T_{1in}$ , in N·m.

#### Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

### R2Trq — Second input shaft torque

scalar

Second input shaft torque,  $T_{2in}$ , in N·m.

#### Dependencies

To create this port, set both of these parameters:

- Port Configuration to Simulink
- Coupling Configuration to Shaft merge

#### C1 — First output shaft angular velocity and torque

two-way connector port

First output shaft angular velocity,  $\omega_{1out}$ , in rad/s and torque,  $T_{1out}$ , in N·m.

#### Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft split

### C2 — Second output shaft angular velocity and torque

two-way connector port

Second output shaft angular velocity,  $\omega_{2out}$ , in rad/s and torque,  $T_{2out}$ , in N·m.

#### Dependencies

To create this port, select:

- **Port Configuration**>Two-way connection
- Coupling Configuration>Shaft split

### C — Output shaft angular velocity and torque

two-way connector port

Output shaft angular velocity,  $\omega_{out}$ , in rad/s and torque,  $T_{out}$ , in N·m.

#### Dependencies

To create this port, select:

- Port Configuration>Two-way connection
- Coupling Configuration>Shaft merge

### **Parameters**

#### **Block Options**

Port Configuration — Specify configuration
Simulink (default) | Two-way connection

Specify the port configuration.

### Coupling Configuration — Specify configuration

Shaft split(default) | Shaft merge

Specify the coupling type.

Coupling 1

**Torsional stiffness, k1 — Stiffness** scalar

Rotational inertia,  $k_1$ , in N·m/rad.

Torsional damping, b1 — Damping
scalar

Torsional damping,  $b_1$ , in N·m· s/rad.

Damping cutoff frequency, omegal\_c - Frequency
scalar

Damping cutoff frequency, in rad/s.

#### **Coupling 2**

**Torsional stiffness, k2 — Stiffness** scalar

Rotational inertia,  $k_2$ , in N·m/rad.

Torsional damping, b2 — Damping
scalar

Torsional damping,  $b_2$ , in N·m· s/rad.

Damping cutoff frequency, omega2\_c - Frequency
scalar

Damping cutoff frequency, in rad/s.

### See Also

Rotational Inertia | Torsional Compliance

Introduced in R2017b

### **Torsional Compliance**

Parallel spring-damper Library: Drivetrain / Couplings



### Description

The Torsional Compliance block implements a parallel spring-damper.

### Ports

### Input

RSpd — Input angular velocity scalar

Input angular velocity, in rad/s.

#### Dependencies

To create this port, for **Port Configuration**, select Simulink.

**CSpd** — Load torque angular velocity scalar

Input angular velocity due to load torque, in rad/s.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

**R** — Angular velocity and torque two-way connector port

Angular velocity in rad/s. Torque is in  $N \cdot m$ .

To create this port, for **Port Configuration**, select Two-way connection.

### Output

RTrq — Input torque scalar

Applied input drive shaft torque, in N·m.

#### Dependencies

To create this port, for **Port Configuration**, select Simulink.

#### CTrq — Load torque scalar

Load drive shaft torque, in N·m.

#### Dependencies

To create this port, for **Port Configuration**, select Simulink.

#### C — Angular velocity and torque

two-way connector port

Angular velocity in rad/s. Torque is in N·m.

#### Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

### **Parameters**

**Block Options** 

Port Configuration — Specify configuration
Simulink (default) | Two-way connection

Specify the port configuration.

Specifying Simulink creates these ports:

- RSpd
- CSpd
- RTrq
- CTrq

Specifying Two-way connection creates these ports:

- R
- C

### Torsional stiffness, k — Inertia

scalar

Torsional stiffness, in N·m/rad.

Torsional damping, b — Damping
scalar

Torsional damping, in  $N \cdot m \cdot s/rad$ .

### Initial deflection, theta\_o - Angular

scalar

Initial deflection, in rad.

### Initial velocity difference, domega\_o - Angular scalar

Initial velocity difference, in rad/s.

### Damping cut-off frequency, omega\_c - Frequency scalar

Damping cut-off frequency, in rad/s.

### See Also

Rotational Inertia | Split Torsional Compliance

Introduced in R2017a

### **Limited Slip Differential**

Limited differential as a planetary bevel gear Library: Drivetrain / Final Drive Unit



### Description

The Limited Slip Differential block implements a differential as a planetary bevel gear train. The block matches the drive shaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-drive shaft ratio
- Crown wheel location
- Viscous and damping coefficients for the axles and carrier
- Type of slip coupling

Use the block in system-level driveline analysis to account for the power transfer from the transmission to the wheels. The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

In a limited slip differential, to prevent one of the wheels from slipping, the differential splits the torque applied to the left and right axles. With different torque applied to the axles, the wheels can move at different angular velocities, preventing slip. The block implements three methods for coupling the different torques applied to the axes:

- Pre-loaded ideal clutch
- Slip speed dependent torque data
- Input torque dependent torque data

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.



### **Equations**

The Limited Slip Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

| Mechanical<br>Dynamic<br>Response | Differential Equation                                |
|-----------------------------------|------------------------------------------------------|
| Crown Gear                        | $\omega_d J_d = T_d - \omega_d b_d - T_i$            |
| Left Axle                         | $\omega_1 J_1 = T_1 - \omega_1 b_1 - T_{i1}$         |
| Right Axle                        | $\omega_2 J_2 = T_2 \cdot \omega_2 b_2 \cdot T_{i2}$ |

The block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$T_1 = T_2 = \frac{N}{2}T_i + T_c$$

$$\omega_{\!d}=\!\frac{N}{2}(\omega_{\!1}\!+\!\omega_{\!2})$$

The equations use these variables.

| N                | Carrier-to-drive shaft gear ratio             |  |  |
|------------------|-----------------------------------------------|--|--|
| $J_d$            | Rotational inertia of the crown gear assembly |  |  |
| $b_d$            | Crown gear linear viscous damping             |  |  |
| $\omega_d$       | Driveshaft angular speed                      |  |  |
| σ                | Slip speed                                    |  |  |
| $J_1$            | Axle 1 rotational inertia                     |  |  |
| $b_1$            | Axle 1 linear viscous damping                 |  |  |
| $\omega_1$       | Axle 1 speed                                  |  |  |
| $J_2$            | Axle 2 rotational inertia                     |  |  |
| $b_2$            | Axle 2 linear viscous damping                 |  |  |
| $\omega_2$       | Axle 2 angular speed                          |  |  |
| $T_d$            | Driveshaft torque                             |  |  |
| $T_1$            | Axle 1 torque                                 |  |  |
| $T_2$            | Axle 2 torque                                 |  |  |
| $T_i$            | Axle internal resistance torque               |  |  |
| $T_{i1}$         | Axle 1 internal resistance torque             |  |  |
| $T_{i2}$         | Axle 2 internal resistance torque             |  |  |
| μ                | Coefficient of friction                       |  |  |
| ת                | Effective clutch radius                       |  |  |
| R <sub>eff</sub> | Annular disk outor radius                     |  |  |
| $R_o$            |                                               |  |  |

- *R<sub>i</sub>* Annular disk inner radius
- $F_c$  Clutch force
- $T_c$  Clutch torque
- $\mu$  Coefficient of friction

Table blocks in Limited Slip Differential have these parameter settings:

- Interpolation method Linear
- Extrapolation method Clip

The ideal clutch coupling model uses the axle slip speed and friction to calculate the clutch torque. The friction coefficient is a function of the slip speed.

 $T_c = F_c N \mu (|\sigma|) R_{eff} \tanh(4|\sigma|)$ 

The disc radii determine the effective clutch radius over which the clutch force acts.

$$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$$

The angular velocities of the axles determine the slip speed.

$$\varpi = \omega_1 - \omega_2$$

To calculate the clutch torque, the slip speed coupling model uses torque data that is a function of slip speed. The angular velocities of the axles determine the slip speed.

$$\varpi = \omega_1 - \omega_2$$

To calculate the clutch torque, the input torque coupling model uses torque data that is a function of input torque.

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$T_1 = T_2 = \frac{N}{2}T_i$$
$$\omega_{d=} = \frac{N}{2}(\omega_1 + \omega_2)$$

### Ports

### Inputs

DriveshftTrq — Torque
scalar

Applied input torque, typically from the engine crankshaft, in  $N{\cdot}m.$ 

**Axl1Trq — Torque** scalar

Axle 1 torque,  $T_1$ , in N·m.

### Axl2Trq — Torque

scalar

Axle 2 torque,  $T_2$ , in N·m.

### Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    |              | Description        | Units |
|-----------|--------------|--------------------|-------|
| Driveshft | DriveshftTrq | Drive shaft torque | N∙m   |
|           | DriveshftSpd | Drive shaft speed  | rad/s |
| Axl1      | Axl1Trq      | Axle 1 torque      | N∙m   |

| Signal |              | Description     | Units |
|--------|--------------|-----------------|-------|
|        | Axl1Spd      | Axle 1 speed    | rad/s |
| Axl2   | Axl2Trq      | Axle 2 torque   | N·m   |
|        | Axl2Spd      | Axle 2 speed    | rad/s |
| Cplng  | CplngTrq     | Torque coupling | N·m   |
|        | CplngSlipSpd | Slip speed      | rad/s |

#### DriveshftSpd — Angular speed

scalar

Drive shaft angular speed,  $\omega_d$ , in rad/s.

### Axl1Spd — Angular speed

scalar

Axle 1 angular speed,  $\omega_1$ , in rad/s.

### Axl2Spd — Angular speed

scalar

Axle 2 angular speed,  $\omega_2$ , in rad/s.

### **Parameters**

#### **Open Differential**

```
Crown wheel (ring gear) located — Specify crown wheel connection
To the left of center-line (default) | To the right of center-line
```

Specify the crown wheel connection to the drive shaft.

```
Carrier to drive shaft ratio, NC/ND — Ratio scalar
```

Carrier-to-drive shaft gear ratio, N.

**Carrier inertia, Jd — Inertia** scalar

Rotational inertia of the crown gear assembly,  $J_d$ , in kg\*m^2. You can include the drive shaft inertia.

**Carrier damping, bd — Damping** scalar

Crown gear linear viscous damping,  $b_d$ , in N·m·s/rad.

Driveshaft 1 inertia, Jw1 - Inertia
scalar

Driveshaft 1 rotational inertia,  $J_1$ , in kg\*m^2.

Driveshaft 1 damping, bw1 — Damping
scalar

Driveshaft 1 linear viscous damping,  $b_1$ , in N·m·s/rad.

```
Driveshaft 2 inertia, Jw2 - Inertia
scalar
```

Driveshaft 2 rotational inertia,  $J_2$ , in kg\*m^2.

### Driveshaft 2 damping, bw2 — Damping

scalar

Driveshaft 2 linear viscous damping,  $b_2$ , in N·m·s/rad.

### Driveshaft 1 initial velocity, omegawlo — Angular velocity scalar

Driveshaft 1 initial velocity,  $\omega_{o1}$ , in rad/s.

### Driveshaft 2 initial velocity, omegaw2o — Angular velocity scalar

Driveshaft 2 initial velocity,  $\omega_{o2}$ , in rad/s.

#### **Slip Coupling**

#### Coupling type — Torque coupling

```
Ideal pre-loaded clutch (default) | Slip speed dependent torque data | Input torque dependent torque data
```

Specify the type of torque coupling.

### Number of disks, Ndisks — Torque coupling scalar

Number of disks.

#### Dependencies

To enable the ideal clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

### Effective radius, Reff — Radius

scalar

The effective radius,  $R_{e\!f\!f}$  , used with the applied clutch friction force to determine the friction force. The effective radius is defined as:

$$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$$

The equation uses these variables.

Annular disk outer radius

Annular disk inner radius

 $R_i$ 

 $R_o$ 

#### Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

### Nominal preload force, Fc — Force scalar

scalar

Nominal preload force, in N.

#### Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

### Friction coefficient vector, mu - Friction

vector

Friction coefficient vector.

#### Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

### Slip speed vector, dw — Angular velocity vector

Slip speed vector, in rad/s.

#### Dependencies

To enable the clutch parameters, select Ideal pre-loaded clutch for the **Coupling type** parameter.

### Torque - slip speed vector, Tdw — Torque vector

Torque vector, in N·m.

#### Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the **Coupling type** parameter.

### Slip speed vector, dwT — Angular velocity vector

Slip speed vector, in rad/s.

#### Dependencies

To enable the slip speed parameters, select Slip speed dependent torque data for the **Coupling type** parameter.

### Torque - input torque vector, TTin — Torque vector

Torque vector, in N·m.

To enable the input torque parameters, select Input torque dependent torque data for the **Coupling type** parameter.

### Input torque vector, Tin — Torque

vector

Torque vector, in N⋅m.

#### Dependencies

To enable the input torque parameters, select Input torque dependent torque data for the **Coupling type** parameter.

### Coupling time constant, tauC — Constant

scalar

Coupling time constant, in s.

### References

[1] Deur, J., Ivanović, V., Hancock, M., and Assadian, F. Modeling and analysis of active differential dynamics. Journal of Dynamic Systems, Measurement, and Control 132.6 (2010): 061501.

### See Also

**Open Differential** 

Introduced in R2017a

### **Open Differential**

Differential as a planetary bevel gearLibrary:Drivetrain / Final Drive Unit



### Description

The Open Differential block implements a differential as a planetary bevel gear train. The block matches the drive shaft bevel gear to the crown (ring) bevel gear. You can specify:

- Carrier-to-drive shaft ratio
- Crown wheel location
- · Viscous and damping coefficients for the axles and carrier

Use the Open Differential block to:

- Dynamically couple the post-transmission drive shaft to the wheel axles or universal joints
- Model simplified or older drivetrains when optimal traction control does not require passive or active torque vectoring
- Model mechanical power splitting in generic gearbox and drive line scenarios

The block is suitable for use in hardware-in-the-loop (HIL) and optimization workflows. All the parameters are tunable.

The block uses a coordinate system that produces positive tire and vehicle motion for standard engine, transmission, and differential configurations. The arrows indicate positive motion.



### **Equations**

The Open Differential block implements these differential equations to represent the mechanical dynamic response for the crown gear, left axle, and right axle.

| Mechanical<br>Dynamic<br>Response | Differential Equation                                      |
|-----------------------------------|------------------------------------------------------------|
| Crown Gear                        | $\dot{\omega}_d J_d = T_d \cdot \omega_d b_d \cdot T_i$    |
| Left Axle                         | $\dot{\omega}_1 J_1 = T_1 \cdot \omega_1 b_1 \cdot T_{i1}$ |
| Right Axle                        | $\dot{\omega}_2 J_2 = T_2 \cdot \omega_2 b_2 \cdot T_{i2}$ |

The Open Differential block assumes rigid coupling between the crown gear and axles. These constraint equations apply.

$$T_1 = T_2 = \frac{N}{2}T_i$$
$$\omega_{d=} = \frac{N}{2}(\omega_1 + \omega_2)$$

The equations use these variables.

| N          | Carrier-to-drive shaft gear ratio             |
|------------|-----------------------------------------------|
| $J_d$      | Rotational inertia of the crown gear assembly |
| $b_d$      | Crown gear linear viscous damping             |
| $\omega_d$ | Drive shaft angular speed                     |
| $J_1$      | Axle 1 rotational inertia                     |
| $b_1$      | Axle 1 linear viscous damping                 |
| $\omega_1$ | Axle 1 speed                                  |
| $J_2$      | Axle 2 rotational inertia                     |
| $b_2$      | Axle 2 linear viscous damping                 |
| $\omega_2$ | Axle 2 angular speed                          |
| $T_d$      | Drive shaft torque                            |
| $T_1$      | Axle 1 torque                                 |
| $T_2$      | Axle 2 torque                                 |
| $T_i$      | Drive shaft internal resistance torque        |
| $T_{i1}$   | Axle 1 internal resistance torque             |
| $T_{i2}$   | Axle 2 internal resistance torque             |

### Ports

### Inputs

DriveshftTrq — Torque
scalar

Applied input torque, typically from the engine crankshaft, in  $N{\cdot}m.$ 

Axl1Trq — Torque scalar

Axle 1 torque,  $T_1$ , in N·m.

Axl2Trq — Torque scalar

Axle 2 torque,  $T_2$ , in N·m.

### Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    |              | Description        | Units |
|-----------|--------------|--------------------|-------|
| Driveshft | DriveshftTrq | Drive shaft torque | N·m   |
|           | DriveshftSpd | Drive shaft speed  | rad/s |
| Axl1      | Axl1Trq      | Axle 1 torque      | N·m   |
|           | Axl1Spd      | Axle 1 speed       | rad/s |
| Axl2      | Axl2Trq      | Axle 2 torque      | N·m   |
|           | Axl2Spd      | Axle 2 speed       | rad/s |

### DriveshftSpd — Angular speed

scalar

Drive shaft angular speed,  $\omega_d$ , in rad/s.
Axl1Spd — Angular speed scalar

Axle 1 angular speed,  $\omega_1$ , in rad/s.

### Axl2Spd — Angular speed

scalar

Axle 2 angular speed,  $\omega_2$ , in rad/s.

### **Parameters**

**Crown wheel (ring gear) located — Specify crown wheel connection** To the left of center-line (default) | To the right of center-line

Specify the crown wheel connection to the drive shaft.

```
Carrier to drive shaft ratio, Ndiff — Ratio scalar
```

Carrier-to-drive shaft gear ratio, *N*, dimensionless.

### Carrier inertia, Jd — Inertia

scalar

Rotational inertia of the crown gear assembly,  $J_d$ , in kg\*m^2. You can include the drive shaft inertia.

```
Carrier damping, bd — Damping
scalar
```

Crown gear linear viscous damping,  $b_d$ , in N·m·s/rad.

Axle 1 inertia, Jw1 — Inertia scalar

Axle 1 rotational inertia,  $J_1$ , in kg\*m<sup>2</sup>.

```
Axle 1 damping, bw1 — Damping
scalar
```

Axle 1 linear viscous damping,  $b_1$ , in N·m·s/rad.

```
Axle 2 inertia, Jw2 — Inertia scalar
```

Axle 2 rotational inertia,  $J_2$ , in kg\*m^2.

Axle 2 damping, bw2 — Damping
scalar

Axle 2 linear viscous damping,  $b_2$ , in N·m·s/rad.

Axle 1 initial velocity, omegawlo — Angular velocity
scalar

Axle 1 initial velocity,  $\omega_{o1}$ , in rad/s.

Axle 2 initial velocity, omegaw2o — Angular velocity
scalar

Axle 2 initial velocity,  $\omega_{o2}$ , in rad/s.

### See Also

Limited Slip Differential

Introduced in R2017a

## **Longitudinal Wheel**

Longitudinal wheel with disc, drum, or mapped brake Library: Drivetrain / Wheels



## Description

The Longitudinal Wheel block implements the longitudinal behavior of an ideal wheel. You can specify the longitudinal force and rolling resistance calculation method, and brake type. Use the block in driveline and longitudinal vehicle simulations where low frequency tire-road and braking forces are required to determine vehicle acceleration, braking, and wheel-rolling resistance. For example, you can use the block to determine the torque and power requirements for a specified drive cycle or braking event. The block is not suitable for applications that require combined lateral slip.

| Block Name                         | Brake Type Setting | Brake Implementation                                                                                   |
|------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|
| Longitudinal Wheel - No<br>Brake   | None               | None                                                                                                   |
| Longitudinal Wheel - Disc<br>Brake | Disc               | Brake that converts the brake<br>cylinder pressure into a braking<br>force.                            |
| Longitudinal Wheel -<br>Drum Brake | Drum               | Simplex drum brake that converts<br>the applied force and brake<br>geometry into a net braking torque. |

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

| Block Name                           | Brake Type Setting | Brake Implementation                                                 |
|--------------------------------------|--------------------|----------------------------------------------------------------------|
| Longitudinal Wheel -<br>Mapped Brake | Mapped             | Lookup table that is a function of the wheel speed and applied brake |
|                                      |                    | pressure.                                                            |

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these **Longitudinal Force** parameters.

| Setting                                 | Block Implementation                                                                                                                          |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Magic Formula constant<br>value         | Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.                                                            |
| Magic Formula pure<br>longitudinal slip | Magic Formula with load-dependent coefficients that<br>implement equations 4.E9 through 4.E18 in <i>Tire and</i><br><i>Vehicle Dynamics</i> . |
| Mapped force                            | Lookup table that is a function of the normal force and wheel slip ratio.                                                                     |

To calculate the rolling resistance torque, specify one of these **Rolling Resistance** parameters.

| Setting               | Block Implementation                                                                                                                                                        |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                  | None                                                                                                                                                                        |
| Pressure and velocity | Method in Stepwise Coastdown Methodology for<br>Measuring Tire Rolling Resistance. The rolling<br>resistance is a function of tire pressure, normal force,<br>and velocity. |
| Magic Formula         | Magic formula equations from 4.E70 in <i>Tire and</i><br><i>Vehicle Dynamics</i> . The magic formula is an empirical<br>equation based on fitting coefficients.             |
| Mapped torque         | Lookup table that is a function of the normal force and spin axis longitudinal velocity.                                                                                    |

To calculate vertical motion, specify one of these Vertical Motion parameters.

| Setting                      | Block Implementation                                                                                                                                                                               |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                         | Block passes the applied chassis forces directly<br>through to the rolling resistance and longitudinal force<br>calculations.                                                                      |
| Mapped stiffness and damping | Vertical motion depends on wheel stiffness and<br>damping. Stiffness is a function of tire sidewall<br>displacement and pressure. Damping is a function of<br>tire sidewall velocity and pressure. |

### **Rotational Wheel Dynamics**

The block calculates the inertial response of the wheel subject to:

- Axle losses
- Brake and drive torque
- Tire rolling resistance
- Ground contact through the tire-road interface

The input torque is the summation of the applied axle torque, braking torque, and moment arising from the combined tire torque.

$$T_i = T_a - T_b + T_d$$

For the moment arising from the combined tire torque, the block implements tractive wheel forces and rolling resistance with first order dynamics. The rolling resistance has a time constant parameterized in terms of a relaxation length.

$$\dot{T}_{d} = \frac{\omega R_{e}}{L_{e} + \omega R_{e}} \left( F_{x} R_{e} + M_{y} \right)$$

To calculate the rolling resistance torque, you can specify one of these **Rolling Resistance** parameters.

| Setting | Block Implementation                            |
|---------|-------------------------------------------------|
| None    | Block sets rolling resistance, $M_y$ , to zero. |

| Setting                  | Block Implementation                                                                                                                                                                                                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pressure and<br>velocity | Block uses the method in Stepwise Coastdown Methodology for<br>Measuring Tire Rolling Resistance. The rolling resistance is a function<br>of tire pressure, normal force, and velocity. Specifically,<br>$M_y = R_e \{a + b   V_x   + c V_x^2\} \{F_z^{\ \beta} p_i^{\alpha}\} \tanh(4V_x)$ |
| Magic Formula            | Block calculates the rolling resistance, $M_y$ , using the Magic formula equations from 4.E70 in <i>Tire and Vehicle Dynamics</i> . The magic formula is an empirical equation based on fitting coefficients.                                                                               |
| Mapped torque            | For the rolling resistance, $M_y$ , the block uses a lookup table that is a function of the normal force and spin axis longitudinal velocity.                                                                                                                                               |

If the brakes are enabled, the block determines the braking locked or unlocked condition based on an idealized dry clutch friction model. Based on the lock-up condition, the block implements these friction and dynamic models.

| lf                             | Lock-Up<br>Condition | Friction Model                                                                        | Dynamic Model                      |
|--------------------------------|----------------------|---------------------------------------------------------------------------------------|------------------------------------|
|                                | Unlocked             |                                                                                       | $\omega J = -\omega b + T_i + T_o$ |
| $\omega \neq 0$                |                      |                                                                                       |                                    |
| or                             |                      |                                                                                       |                                    |
| $T_S <  T_i + T_f - \omega b $ |                      | $T_f = T_k$                                                                           |                                    |
|                                |                      | where,                                                                                |                                    |
|                                |                      | $T_k = F_c R_{eff} \mu_k \tanh\left[4\left(-\omega_d\right)\right]$                   |                                    |
|                                | Locked               | $T_{f} = F_{c}R_{eff}\mu_{s}$ $T_{f} = T_{s}^{c}Q(\mathbf{p}^{3} - \mathbf{p}^{3})$   | $\omega = 0$                       |
| $\omega = 0$                   |                      | $R_{eff} = \frac{2(\mathbf{n}_0 - \mathbf{n}_i)}{2(\mathbf{p}_0^2 - \mathbf{p}_i^2)}$ |                                    |
| and                            |                      | $\Im(\mathbf{R}_0 - \mathbf{R}_i^-)$                                                  |                                    |

 $\begin{array}{c} T_S \geq \left| T_i + T_f - \omega b \right| \\ \text{The equations use these variables.} \end{array}$ 

- $\omega$  Wheel angular velocity
- *a* Velocity independent force component

| b          | Linear velocity force component                                     |
|------------|---------------------------------------------------------------------|
| С          | Quadratic velocity force component                                  |
| $L_e$      | Tire relaxation length                                              |
| J          | Moment of inertia                                                   |
| $M_y$      | Rolling resistance torque                                           |
| $T_a$      | Applied axle torque                                                 |
| $T_b$      | Braking torque                                                      |
| $T_d$      | Combined tire torque                                                |
| $T_{f}$    | Frictional torque                                                   |
| $T_i$      | Net input torque                                                    |
| $T_k$      | Kinetic frictional torque                                           |
| $T_o$      | Net output torque                                                   |
| $T_s$      | Static frictional torque                                            |
| $F_c$      | Applied clutch force                                                |
| $F_{x}$    | Longitudinal force developed by the tire road interface due to slip |
| $R_{eff}$  | Effective clutch radius                                             |
| $R_o$      | Annular disk outer radius                                           |
| $R_i$      | Annular disk inner radius                                           |
| $R_e$      | Effective tire radius while under load and for a given pressure     |
| $V_{\chi}$ | Longitudinal axle velocity                                          |
| Fz         | Vehicle normal force                                                |
| α          | Tire pressure exponent                                              |
| β          | Normal force exponent                                               |
| $p_i$      | Tire pressure                                                       |
| $\mu_s$    | Coefficient of static friction                                      |
| $\mu_k$    | Coefficient of kinetic friction                                     |

### **Brakes**

If you specify the **Brake Type** parameter **Disc**, the block implements a disc brake. This figure shows the side and front views of a disc brake.



A disc brake converts brake cylinder pressure from the brake cylinder into force. The disc brake applies the force at the brake pad mean radius.

The block uses these equations to calculate brake torque for the disc brake.

$$T = \begin{cases} \frac{\mu P \pi B_a^{\ 2} R_m N_{pads}}{4} & \text{when } N \neq 0\\ \frac{\mu_{static} P \pi B_a^{\ 2} R_m N_{pads}}{4} & \text{when } N = 0 \end{cases}$$

$$Rm = \frac{Ro + Ri}{2}$$

The equations use these variables.

| Т              | Brake torque                                              |
|----------------|-----------------------------------------------------------|
| Ρ              | Applied brake pressure                                    |
| Ν              | Wheel speed                                               |
| $N_{pads}$     | Number of brake pads in disc brake assembly               |
| $\mu_{static}$ | Disc pad-rotor coefficient of static friction             |
| μ              | Disc pad-rotor coefficient of kinetic friction            |
| $B_a$          | Brake actuator bore diameter                              |
| $R_m$          | Mean radius of brake pad force application on brake rotor |
| $R_o$          | Outer radius of brake pad                                 |
| $R_i$          | Inner radius of brake pad                                 |

If you specify the **Brake Type** parameter Drum, the block implements a static (steadystate) simplex drum brake. A simplex drum brake consists of a single two-sided hydraulic actuator and two brake shoes. The brake shoes do not share a common hinge pin.

The simplex drum brake model uses the applied force and brake geometry to calculate a net torque for each brake shoe. The drum model assumes that the actuators and shoe geometry are symmetrical for both sides, allowing a single set of geometry and friction parameters to be used for both shoes.

The block implements equations that are derived from these equations in *Fundamentals of Machine Elements*.

$$T_{rshoe} = \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar\left(2\theta_1 - 2\theta_2 + \sin 2\theta_2 - \sin 2\theta_1\right)}\right) P_{rshoe}$$

$$T_{lshoe} = \left(\frac{\pi\mu cr(\cos\theta_2 - \cos\theta_1)B_a^2}{-2\mu(2r\left(\cos\theta_2 - \cos\theta_1\right) + a\left(\cos^2\theta_2 - \cos^2\theta_1\right)\right) + ar\left(2\theta_1 - 2\theta_2 + \sin 2\theta_2 - \sin 2\theta_1\right)}\right)P_{lshoe}$$

$$T = \begin{cases} T_{rshoe} + T_{lshoe} & \text{when } N \neq 0 \\ (T_{rshoe} + T_{lshoe}) \frac{\mu_{static}}{\mu} & \text{when } N = 0 \end{cases}$$



The equations use these variables.

T Brake torque

| Р                  | Applied brake pressure                                                         |
|--------------------|--------------------------------------------------------------------------------|
| Ν                  | Wheel speed                                                                    |
| $\mu_{static}$     | Disc pad-rotor coefficient of static friction                                  |
| μ                  | Disc pad-rotor coefficient of kinetic friction                                 |
| T <sub>rshoe</sub> | Right shoe brake torque                                                        |
| T <sub>lshoe</sub> | Left shoe brake torque                                                         |
| а                  | Distance from drum center to shoe hinge pin center                             |
| С                  | Distance from shoe hinge pin center to brake actuator connection on brake shoe |
| r                  | Drum internal radius                                                           |
| $B_a$              | Brake actuator bore diameter                                                   |
| $\Theta_1$         | Angle from shoe hinge pin center to start of brake pad material on shoe        |
| $\Theta_2$         | Angle from shoe hinge pin center to end of brake pad material on shoe          |

If you specify the  ${\bf Brake}$   ${\bf Type}$  parameter  ${\tt Mapped},$  the block uses a lookup table to determine the brake torque.

$$T = \begin{cases} f_{brake}(P,N) & \text{when } N \neq 0 \\ \left(\frac{\mu_{static}}{\mu}\right) f_{brake}(P,N) & \text{when } N = 0 \end{cases}$$

The equations use these variables.

| Т                | Brake torque                                                                                                                      |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| $f_{brake}(P,N)$ | Brake torque lookup table                                                                                                         |
| Р                | Applied brake pressure                                                                                                            |
| Ν                | Wheel speed                                                                                                                       |
| $\mu_{static}$   | Friction coefficient of drum pad-face interface under static conditions $% \left( {{{\left[ {{{c}_{{\rm{s}}}} \right]}}} \right)$ |
| μ                | Friction coefficient of disc pad-rotor interface                                                                                  |

The lookup table for the brake torque,  $f_{brake}(P,N)$  , is a function of applied brake pressure and wheel speed, where:

- *T* is brake torque, in N·m.
- *P* is applied brake pressure, in bar.
- *N* is wheel speed, in rpm.



### Longitudinal Force

To model the Longitudinal Wheel block longitudinal forces, you can use the Magic Formula. The model provides a steady-state *tire characteristic function*  $F_x = f(\kappa, F_z)$ , the longitudinal force  $F_x$  on the tire, based on:

- Vertical load  $F_z$
- Wheel slip  $\kappa$



The Magic Formula model uses these variables.

| Ω                                          | Wheel angular velocity                                                                                       |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| r <sub>w</sub>                             | Wheel radius                                                                                                 |
| $V_{\mathrm{x}}$                           | Wheel hub longitudinal velocity                                                                              |
| $r_w \Omega$                               | Tire tread longitudinal velocity                                                                             |
| $V_{\rm sx} = r_{\rm w}\Omega - V_{\rm x}$ | Wheel slip velocity                                                                                          |
| $\kappa = V_{\rm sx} /  V_{\rm x} $        | Wheel slip                                                                                                   |
| $F_{z}, F_{z0}$                            | Vertical load and nominal vertical load on tire                                                              |
| $F_{\rm x} = f(\kappa, F_{\rm z})$         | Longitudinal force exerted on the tire at the contact point. Also a characteristic function $f$ of the tire. |

If you set **Longitudinal Force** to Magic Formula constant value, the block implements the Magic Formula as a specific form of the tire characteristic function, characterized by four dimensionless coefficients (B, C, D, E), or stiffness, shape, peak, and curvature:

$$F_{x} = f(\kappa, F_{z}) = F_{z} D \sin\left(C \tan^{-1}\left[\{B\kappa - E\left[B\kappa - \tan^{-1}\left(B\kappa\right)\right]\}\}\right]\right)$$

The slope of f at  $\kappa = 0$  is  $BCD \cdot F_z$ .

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

If you set **Longitudinal Force** to Magic Formula pure longitudinal slip, the block implements a more general Magic Formula using dimensionless coefficients that are functions of the tire load. The block implements the longitudinal force equations in Chapter 4 of *Tire and Vehicle Dynamics*, including 4.E9 through 4.E18:

$$F_{x0} = D_x \sin(C_x \tan^{-1}[\{B_x \kappa_x - E_x[B_x \kappa_x - \tan^{-1}(B_x \kappa_x)]\}]) + S_{vx}$$

where:

$$\begin{aligned} \kappa_{x} &= \kappa + S_{Hx} \\ C_{x} &= p_{Cxl}\lambda_{Cx} \\ D_{x} &= \mu_{x}F_{z}\varsigma_{1} \\ \mu_{x} &= (p_{Dxl} + p_{Dx2}df_{z})(1 + p_{\mu x3}dp_{i} + p_{\mu x4}dp_{i}^{2})(1 - p_{Dx3}\gamma^{2})\lambda_{\mu x}^{*} \\ E_{x} &= (p_{Exl} + p_{Ex2}df_{z} + p_{Ex3}df_{z}^{2})[1 - p_{Ex4}\mathrm{sgn}(\kappa_{x})]\lambda_{Ex} \\ K_{x\kappa} &= F_{z}(p_{Kxl} + p_{Kx2}df_{z})\exp(p_{Kx3}df_{z})(1 + p_{\mu x1}dp_{i} + p_{\mu x2}dp_{i}^{2}) \\ B_{x} &= K_{x\kappa} / (C_{x}D_{x} + \varepsilon_{x}) \\ S_{Hx} &= p_{Hxl} + p_{Hx2}df_{z} \\ S_{Vx} &= F_{z} \bullet (p_{Vxl} + p_{Vx2}df_{z})\lambda_{Vx}\lambda_{\mu x}^{*}\varsigma_{1} \end{aligned}$$

 $S_{Hx}$  and  $S_{Vx}$  represent offsets to the slip and longitudinal force in the force-slip function, or horizontal and vertical offsets if the function is plotted as a curve.  $\mu_x$  is the longitudinal load-dependent friction coefficient.  $\varepsilon_x$  is a small number inserted to prevent division by zero as  $F_z$  approaches zero.

### **Vertical Dynamics**

If you select no vertical degrees-of-freedom by setting **Vertical Motion** to None, the block passes the applied chassis forces directly through to the rolling resistance and longitudinal force calculations.

If you set **Vertical Motion** to Mapped stiffness and damping, the vertical motion depends on wheel stiffness and damping. Stiffness is a function of tire sidewall displacement and pressure. Damping is a function of tire sidewall velocity and pressure.

$$Fztire(z, \dot{z}, P_{tire}) = F_{zk}(z, P_{tire}) + F_{zb}(\dot{z}, P_{tire})$$

The block determines the vertical response using this differential equation.

 $\ddot{z}m = Fztire - F_z - mg$ 

When you disable the vertical degree-of-freedom, the input normal force from the vehicle passes directly to the longitudinal and rolling force calculations.

$$\ddot{z} = \dot{z} = m = 0$$
  
Fztire = mg

The block uses the wheel-fixed frame to resolve the vertical forces.



The equations use these variables.

| Fztire            | Tire normal force along the wheel-fixed $z$ -axis                                            |
|-------------------|----------------------------------------------------------------------------------------------|
| т                 | Axle mass                                                                                    |
| F <sub>zk</sub>   | Tire normal force due to wheel stiffness along the wheel-fixed $z$ -axis                     |
| F <sub>zb</sub>   | Tire normal force due to wheel damping along the wheel-fixed $z$ -axis                       |
| Fz                | Suspension or vehicle normal force along the wheel-fixed <i>z</i> -axis                      |
| P <sub>Tire</sub> | Tire pressure                                                                                |
| z,ż,Ż             | Tire displacement, velocity, and acceleration, respectively, along the wheel-fixed $z$ -axis |

## Ports

### Input

### BrkPrs — Brake pressure

scalar

Brake pressure, in Pa.

#### Dependencies

To create this port, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

### AxlTrq — Axle torque

scalar

Axle torque,  $T_a$ , about wheel spin axis, in N·m.

#### Vx — Velocity scalar

Axle longitudinal velocity along vehicle(body)-fixed x-axis, in m/s.

### Fz — Normal force

scalar

Absolute value of suspension or vehicle normal force along body-fixed *z*-axis, in N.

#### **Gnd — Ground displacement**

scalar

Ground displacement, Grndz, along negative wheel-fixed z-axis, in m.



#### Dependencies

To create Gnd:

- Set Vertical Motion to Mapped stiffness and damping.
- On the Vertical pane, select Input ground displacement.

#### lam\_mux — Friction scaling factor

scalar

Longitudinal friction scaling factor, dimensionless.

#### Dependencies

To create this port, select **Input friction scale factor**.

## TirePrs — Tire pressure scalar

Tire pressure, in Pa.

To create this port:

- Set one of these parameters:
  - Longitudinal Force to Magic Formula pure longitudinal slip.
  - Rolling Resistance to Pressure and velocity or Magic Formula.
  - Vertical Motion to Mapped stiffness and damping.
- On the **Wheel Dynamics** pane, select **Input tire pressure**.

### Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal | Description                                                   | Units |
|--------|---------------------------------------------------------------|-------|
| AxlTrq | Axle torque about body-fixed y-axis                           | N·m   |
| Omega  | Wheel angular velocity about body-<br>fixed y-axis            | rad/s |
| Fx     | Longitudinal vehicle force along body-<br>fixed x-axis        | N     |
| Fz     | Vertical vehicle force along body-fixed <i>z</i> -axis        | N     |
| Му     | Rolling resistance torque about body-<br>fixed y-axis         | N·m   |
| Карра  | Slip ratio                                                    | NA    |
| Vx     | Vehicle longitudinal velocity along body-fixed <i>x</i> -axis | m/s   |
| Re     | Wheel effective radius along wheel-<br>fixed <i>z</i> -axis   | m     |
| BrkTrq | Brake torque about body-fixed y-axis                          | N·m   |
| BrkPrs | Brake pressure                                                | Pa    |

| Signal  | Description                                                                                                 | Units |
|---------|-------------------------------------------------------------------------------------------------------------|-------|
| Z       | Wheel vertical deflection along wheel-<br>fixed <i>z</i> -axis                                              | m     |
| zdot    | Wheel vertical velocity along wheel-<br>fixed <i>z</i> -axis                                                | m/s   |
| Gndz    | Ground displacement along negative of<br>wheel-fixed <i>z</i> -axis (positive input<br>produces wheel lift) | m     |
| GndFz   | Vertical wheel force on ground along negative of wheel-fixed <i>z</i> -axis                                 | N     |
| TirePrs | Tire pressure                                                                                               | Ра    |

#### Fx — Longitudinal axle force

scalar

Longitudinal force acting on axle, along body-fixed *x*-axis, in N. Positive force acts to move the vehicle forward.

#### **Omega** — Wheel angular velocity

scalar

Wheel angular velocity, about body-fixed *y*-axis, in rad/s.

#### z — Wheel vertical deflection

scalar

Wheel vertical deflection along wheel-fixed *z*-axis, in m.

#### Dependencies

To create this port, set Vertical Motion to Mapped stiffness and damping.

#### zdot — Wheel vertical velocity

scalar

Wheel vertical velocity along wheel-fixed *z*-axis, in m/s.

#### Dependencies

To create this port, set Vertical Motion to Mapped stiffness and damping.

## **Parameters**

### **Block Options**

#### Longitudinal Force — Select type

Magic Formula constant value (default) | Magic Formula pure longitudinal slip | Mapped force

The block models longitudinal force as a function of wheel slip relative to the road surface. To calculate the longitudinal force, specify one of these **Longitudinal Force** parameters.

| Setting                                 | Block Implementation                                                                                                                          |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Magic Formula constant<br>value         | Magic Formula with constant coefficient for stiffness, shape, peak, and curvature.                                                            |
| Magic Formula pure<br>longitudinal slip | Magic Formula with load-dependent coefficients that<br>implement equations 4.E9 through 4.E18 in <i>Tire and</i><br><i>Vehicle Dynamics</i> . |
| Mapped force                            | Lookup table that is a function of the normal force and wheel slip ratio.                                                                     |

#### Dependencies

| Selecting                       | Enables These Parameters               |
|---------------------------------|----------------------------------------|
| Magic Formula constant<br>value | Pure longitudinal peak factor, Dx      |
|                                 | Pure longitudinal shape factor, Cx     |
|                                 | Pure longitudinal stiffness factor, Bx |
|                                 | Pure longitudinal curvature factor, Ex |

| Selecting          | Enables These Parameters                                                    |
|--------------------|-----------------------------------------------------------------------------|
| Magic Formula pure | Cfx shape factor, PCX1                                                      |
|                    | Longitudinal friction at nominal normal load,<br>PDX1                       |
|                    | Frictional variation with load, PDX2                                        |
|                    | Frictional variation with camber, PDX3                                      |
|                    | Longitudinal curvature at nominal normal load,<br>PEX1                      |
|                    | Variation of curvature factor with load, PEX2                               |
|                    | Variation of curvature factor with square of load, PEX3                     |
|                    | Longitudinal curvature factor with slip, PEX4                               |
|                    | Longitudinal slip stiffness at nominal normal<br>load, PKX1                 |
|                    | Variation of slip stiffness with load, PKX2                                 |
|                    | Slip stiffness exponent factor, PKX3                                        |
|                    | Horizontal shift in slip ratio at nominal normal<br>load, PHX1              |
|                    | Variation of horizontal slip ratio with load, PHX2                          |
|                    | Vertical shift in load at nominal normal load,<br>PVX1                      |
|                    | Variation of vertical shift with load, PVX2                                 |
|                    | Linear variation of longitudinal slip stiffness with tire pressure, PPX1    |
|                    | Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 |

| Selecting    | Enables These Parameters                                                   |
|--------------|----------------------------------------------------------------------------|
|              | Linear variation of peak longitudinal friction with tire pressure, PPX3    |
|              | Quadratic variation of peak longitudinal friction with tire pressure, PPX4 |
|              | Linear variation of longitudinal slip stiffness with tire pressure, PPX1   |
|              | Slip speed decay function scaling factor,<br>lam_muV                       |
|              | Brake slip stiffness scaling factor, lam_Kxkappa                           |
|              | Slip speed decay function scaling factor,<br>lam_muV                       |
|              | Longitudinal shape scaling factor, lam_Cx                                  |
|              | Longitudinal curvature scaling factor, lam_Ex                              |
|              | Longitudinal horizontal shift scaling factor,<br>lam_Hx                    |
|              | Longitudinal vertical shift scaling factor, lam_Vx                         |
| Mapped force | Slip ratio breakpoints, kappaFx                                            |
|              | Normal force breakpoints, FzFx                                             |
|              | Longitudinal force map, FxMap                                              |

#### **Rolling Resistance — Select type**

None (default) | Pressure and velocity | Magic Formula | Mapped torque

To calculate the rolling resistance torque, specify one of these **Rolling Resistance** parameters.

| Setting | Block Implementation |
|---------|----------------------|
| None    | None                 |

| Setting               | Block Implementation                                                                                                                                                        |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pressure and velocity | Method in Stepwise Coastdown Methodology for<br>Measuring Tire Rolling Resistance. The rolling<br>resistance is a function of tire pressure, normal force,<br>and velocity. |
| Magic Formula         | Magic formula equations from 4.E70 in <i>Tire and</i><br><i>Vehicle Dynamics</i> . The magic formula is an empirical<br>equation based on fitting coefficients.             |
| Mapped torque         | Lookup table that is a function of the normal force and spin axis longitudinal velocity.                                                                                    |

| Selecting             | Enables These Parameters                    |
|-----------------------|---------------------------------------------|
| Pressure and velocity | Velocity independent force coefficient, aMy |
|                       | Linear velocity force component, bMy        |
|                       | Quadratic velocity force component, cMy     |
|                       | Tire pressure exponent, alphaMy             |
|                       | Normal force exponent, betaMy               |

| Selecting     | Enables These Parameters                                      |
|---------------|---------------------------------------------------------------|
| Magic Formula | Rolling resistance torque coefficient, QSY                    |
|               | Longitudinal force rolling resistance coefficient,<br>QSY2    |
|               | Linear rotational speed rolling resistance coefficient, QSY3  |
|               | Quartic rotational speed rolling resistance coefficient, QSY4 |
|               | Camber squared rolling resistance torque, QSY5                |
|               | Load based camber squared rolling resistance torque, QSY6     |
|               | Normal load rolling resistance coefficient, QSY7              |
|               | Pressure load rolling resistance coefficient, QSY8            |
|               | Rolling resistance scaling factor, lam_My                     |
| Mapped torque | Spin axis velocity breakpoints, VxMy                          |
|               | Normal force breakpoints, FzMy                                |
|               | Rolling resistance torque map, MyMap                          |

#### Brake Type — Select type

None | Disc | Drum | Mapped

There are four types of Longitudinal Wheel blocks. Each block implements a different brake type.

| Block Name                         | Brake Type Setting | Brake Implementation                                                        |
|------------------------------------|--------------------|-----------------------------------------------------------------------------|
| Longitudinal Wheel - No<br>Brake   | None               | None                                                                        |
| Longitudinal Wheel - Disc<br>Brake | Disc               | Brake that converts the brake<br>cylinder pressure into a braking<br>force. |

| Block Name                           | Brake Type Setting | Brake Implementation                                                                                   |
|--------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|
| Longitudinal Wheel -<br>Drum Brake   | Drum               | Simplex drum brake that converts<br>the applied force and brake<br>geometry into a net braking torque. |
| Longitudinal Wheel -<br>Mapped Brake | Mapped             | Lookup table that is a function of the<br>wheel speed and applied brake<br>pressure.                   |

**Vertical Motion — Select type** None (default) | Mapped stiffness and damping

To calculate vertical motion, specify one of these **Vertical Motion** parameters.

| Setting                      | Block Implementation                                                                                                                                                                               |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                         | Block passes the applied chassis forces directly<br>through to the rolling resistance and longitudinal force<br>calculations.                                                                      |
| Mapped stiffness and damping | Vertical motion depends on wheel stiffness and<br>damping. Stiffness is a function of tire sidewall<br>displacement and pressure. Damping is a function of<br>tire sidewall velocity and pressure. |

| Selecting        | Enables These Parameters                 | Creates These Output<br>Ports |
|------------------|------------------------------------------|-------------------------------|
| Mapped stiffness | Wheel and unsprung mass, m               | Z                             |
| and damping      | Initial deflection, zo                   | zdot                          |
|                  | Initial velocity, zdoto                  |                               |
|                  | Gravitational acceleration, g            |                               |
|                  | Vertical deflection breakpoints,<br>zFz  |                               |
|                  | Pressure breakpoints, pFz                |                               |
|                  | Force due to deflection, Fzz             |                               |
|                  | Vertical velocity breakpoints,<br>zdotFz |                               |
|                  | Force due to velocity, Fzzdot            |                               |
|                  | Ground displacement, Gndz                |                               |
|                  | Input ground displacement                |                               |

Longitudinal scaling factor, lam\_x — Friction scaling factor
1 (default)

Longitudinal friction scaling factor, dimensionless.

#### Dependencies

To enable this parameter, clear Input friction scale factor.

#### Input friction scale factor — Selection

**Off** (default)

Create input port for longitudinal friction scaling factor.

#### Dependencies

Selecting this parameter:

- Creates Input port lam\_mux.
- Disables parameter Longitudinal scaling factor, lam\_x.

### **Wheel Dynamics**

Axle viscous damping coefficient, br - Damping
scalar

Axle viscous damping coefficient, br, in N·m· s/rad.

Wheel inertia, Iyy — Inertia scalar

Wheel inertia, in Km\*m^2.

Wheel initial angular velocity, omegao — Wheel speed scalar

Initial angular velocity of wheel, along body-fixed *y*-axis, in rad/s.

## **Relaxation length, Lrel – Relaxation length** scalar

Wheel relaxation length, in m.

### Loaded radius, Re — Loaded radius

scalar

Loaded wheel radius, Re, in m.



### Unloaded radius, UNLOADED\_RADIUS — Unloaded radius

scalar

Unloaded wheel radius, in m.

#### Dependencies

To create this parameter, set **Rolling Resistance** to Pressure and velocity or Magic Formula.

#### Nominal longitudinal speed, LONGVL - Speed

scalar

Nominal longitudinal speed along body-fixed *x*-axis, in m/s.

#### Dependencies

To enable this parameter, set **Longitudinal Force** to Magic Formula pure longitudinal slip.

### Nominal camber angle, gamma — Camber

scalar

Nominal camber angle, in rad.

#### Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

## Nominal pressure, NOMPRES — Pressure scalar

Nominal pressure, in Pa.

#### Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

#### Pressure, press — Pressure

scalar

Pressure, in Pa.

#### Dependencies

To enable this parameter:

- Set one of these:
  - Longitudinal Force to Magic Formula pure longitudinal slip.
  - Rolling Resistance to Pressure and velocity or Magic Formula.
  - Vertical Motion to Mapped stiffness and damping.
- On the **Wheel Dynamics** pane, clear **Input tire pressure**.

### Longitudinal

#### **Magic Formula Constant Value**

### Pure longitudinal peak factor, Dx — Factor

scalar

Pure longitudinal peak factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

#### Pure longitudinal shape factor, Cx - Factor

scalar

Pure longitudinal shape factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

### Pure longitudinal stiffness factor, Bx — Factor

scalar

Pure longitudinal stiffness factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

#### Pure longitudinal curvature factor, Ex - Factor

scalar

Pure longitudinal curvature factor, dimensionless.

The coefficients are based on empirical tire data. These values are typical sets of constant Magic Formula coefficients for common road conditions.

| Surface    | В  | С   | D    | E    |
|------------|----|-----|------|------|
| Dry tarmac | 10 | 1.9 | 1    | 0.97 |
| Wet tarmac | 12 | 2.3 | 0.82 | 1    |
| Snow       | 5  | 2   | 0.3  | 1    |
| Ice        | 4  | 2   | 0.1  | 1    |

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula constant value.

#### Magic Formula Pure Longitudinal Slip

Cfx shape factor, PCX1 – Factor scalar

Cfx shape factor, PCX1, dimensionless.

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Longitudinal friction at nominal normal load, PDX1 — Factor scalar

Longitudinal friction at nominal normal load, PDX1, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

### Frictional variation with load, PDX2 — Factor

scalar

Frictional variation with load, PDX2, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Frictional variation with camber, PDX3 — Factor

scalar

Frictional variation with camber, PDX3, 1/rad^2.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Longitudinal curvature at nominal normal load, PEX1 — Factor scalar

Longitudinal curvature at nominal normal load, PEX1, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Variation of curvature factor with load, PEX2 — Factor scalar

Variation of curvature factor with load, PEX2, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## **Variation of curvature factor with square of load, PEX3 — Factor** scalar

Variation of curvature factor with square of load, PEX3, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Longitudinal curvature factor with slip, PEX4 — Factor scalar

Longitudinal curvature factor with slip, PEX4, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Longitudinal slip stiffness at nominal normal load, PKX1 — Factor scalar

Longitudinal slip stiffness at nominal normal load, PKX1, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Variation of slip stiffness with load, PKX2 — Factor scalar

Variation of slip stiffness with load, PKX2, dimensionless.

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

### Slip stiffness exponent factor, PKX3 — Factor

scalar

Slip stiffness exponent factor, PKX3, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

Horizontal shift in slip ratio at nominal normal load, PHX1 — Factor scalar

Horizontal shift in slip ratio at nominal normal load, PHX1, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Variation of horizontal slip ratio with load, PHX2 — Factor scalar

Variation of horizontal slip ratio with load, PHX2, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## **Vertical shift in load at nominal normal load, PVX1 — Factor** scalar

Vertical shift in load at nominal normal load, PVX1, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Variation of vertical shift with load, PVX2 — Factor scalar

Variation of vertical shift with load, PVX2, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Linear variation of longitudinal slip stiffness with tire pressure, PPX1 — Factor

scalar

Linear variation of longitudinal slip stiffness with tire pressure, PPX1, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2 — Factor scalar

Quadratic variation of longitudinal slip stiffness with tire pressure, PPX2, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Linear variation of peak longitudinal friction with tire pressure, PPX3 — Factor

scalar

Linear variation of peak longitudinal friction with tire pressure, PPX3, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Quadratic variation of peak longitudinal friction with tire pressure, PPX4 — Factor

scalar

Quadratic variation of peak longitudinal friction with tire pressure, PPX4, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Slip speed decay fuction scaling factor, lam\_muV — Factor scalar

Slip speed decay function scaling factor, lam\_muV, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Brake slip stiffness scaling factor, lam\_Kxkappa — Factor scalar

Brake slip stiffness scaling factor, lam Kxkappa, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Longitudinal shape scaling factor, lam\_Cx — Factor scalar

Longitudinal shape scaling factor, lam\_Cx, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

## Longitudinal curvature scaling factor, lam\_Ex — Factor scalar

Longitudinal curvature scaling factor, lam\_Ex, dimensionless.
To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Longitudinal horizontal shift scaling factor, lam\_Hx — Factor scalar

Longitudinal horizontal shift scaling factor, lam\_Hx, dimensionless.

#### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

# Longitudinal vertical shift scaling factor, lam\_Vx — Factor scalar

Longitudinal vertical shift scaling factor, lam Vx, dimensionless.

### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Magic Formula pure longitudinal slip.

### Mapped Force

## Slip ratio breakpoints, kappaFx — Breakpoints vector

Slip ratio breakpoints, dimensionless.

### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

### Normal force breakpoints, FzFx — Breakpoints

vector

Normal force breakpoints, N.

### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

## Longitudinal force map, FxMap — Lookup table array

Longitudinal force versus slip ratio and normal force, N.

### Dependencies

To create this parameter, select the **Longitudinal Force** parameter Mapped force.

### **Rolling Resistance**

### **Pressure and Velocity**

# **Velocity independent force coefficient, aMy — Force coefficient** scalar

Velocity independent force coefficient, in s/m.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter **Pressure** and **velocity**.

# Linear velocity force component, bMy — Force component scalar

Linear velocity force component, in s/m.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter **Pressure** and **velocity**.

# **Quadratic velocity force component, cMy — Force component** scalar

Quadratic velocity force component, in  $s^2/m^2$ .

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter **Pressure** and **velocity**.

## Tire pressure exponent, alphaMy — Pressure exponent scalar

Tire pressure exponent, dimensionless.

#### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

## Normal force exponent, betaMy — Force exponent scalar

Normal force exponent, dimensionless.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Pressure and velocity.

### **Magic Formula**

# **Rolling resistance torque coefficient, QSY1 — Torque coefficient** scalar

Rolling resistance torque coefficient, dimensionless.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Longitudinal force rolling resistance coefficient, QSY2 — Force resistance coefficient

scalar

Longitudinal force rolling resistance coefficient, dimensionless.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Linear rotational speed rolling resistance coefficient, QSY3 — Linear speed coefficient

scalar

Linear rotational speed rolling resistance coefficient, dimensionless.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Quartic rotational speed rolling resistance coefficient, QSY4 — Quartic speed coefficient

scalar

Quartic rotational speed rolling resistance coefficient, dimensionless.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Camber squared rolling resistance torque, QSY5 — Camber resistance torque

scalar

Camber squared rolling resistance torque, in 1/rad^2.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Load based camber squared rolling resistance torque, $\ensuremath{\mathsf{QSY6}}$ — Load resistance torque

scalar

Load based camber squared rolling resistance torque, in 1/rad^2.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Normal load rolling resistance coefficient, QSY7 — Normal resistance coefficient

scalar

Normal load rolling resistance coefficient, dimensionless.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

# Pressure load rolling resistance coefficient, QSY8 — Pressure resistance coefficient

scalar

Pressure load rolling resistance coefficient, dimensionless.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

```
Rolling resistance scaling factor, lam_My - Scale
scalar
```

Rolling resistance scaling factor, dimensionless.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Magic Formula.

### Mapped

# Spin axis velocity breakpoints, VxMy — Breakpoints vector

Spin axis velocity breakpoints, in m/s.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

### Normal force breakpoints, FzMy — Breakpoints

vector

Normal force breakpoints, in N.

### Dependencies

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

# **Rolling resistance torque map, MyMap — Lookup table** scalar

Rolling resistance torque versus axle speed and normal force, in N·m.

To create this parameter, select the **Rolling Resistance** parameter Mapped torque.

### Brake

# Static friction coefficient, mu\_static - Static friction scalar

Static friction coefficient, dimensionless.

### Dependencies

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

# Kinetic friction coefficient, mu\_kinetic - Kinetic friction scalar

Kinematic friction coefficient, dimensionless.

### Dependencies

To enable this parameter, for the **Brake Type** parameter, specify one of these types:

- Disc
- Drum
- Mapped

Disc

# Disc brake actuator bore, disc\_abore - Bore distance scalar

Disc brake actuator bore, in m.

### Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.

## Brake pad mean radius, Rm — Radius scalar

Brake pad mean radius, in m.

### Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.

## Number of brake pads, num\_pads — Count scalar

Number of brake pads.

### Dependencies

To enable the disc brake parameters, select Disc for the Brake Type parameter.

#### Drum

# Drum brake actuator bore, disc\_abore — Bore distance scalar

Drum brake actuator bore, in m.

### Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

# Shoe pin to drum center distance, drum\_a - Distance scalar

Shoe pin to drum center distance, in m.

### Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

# Shoe pin center to force application point distance, drum\_c Distance scalar

Shoe pin center to force application point distance, in m.

To enable the drum brake parameters, select Drum for the Brake Type parameter.

Drum internal radius, drum\_r - Radius
scalar

Drum internal radius, in m.

#### Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

```
Shoe pin to pad start angle, drum_theta1 - Angle
scalar
```

Shoe pin to pad start angle, in deg.

#### Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

## Shoe pin to pad end angle, drum\_theta2 — Angle scalar

Shoe pin to pad end angle, in deg.

#### Dependencies

To enable the drum brake parameters, select Drum for the Brake Type parameter.

#### Mapped

```
Brake actuator pressure breakpoints, brake_p_bpt — Breakpoints
vector
```

Brake actuator pressure breakpoints, in bar.

#### Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

```
Wheel speed breakpoints, brake_n_bpt — Breakpoints
vector
```

Wheel speed breakpoints, in rpm.

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

```
Brake torque map, f_brake_t - Lookup table
array
```

The lookup table for the brake torque,  $f_{brake}(P,N)$ , is a function of applied brake pressure and wheel speed, where:

- *T* is brake torque, in N·m.
- *P* is applied brake pressure, in bar.
- *N* is wheel speed, in rpm.



### Dependencies

To enable the mapped brake parameters, select Mapped for the Brake Type parameter.

### Vertical

## Nominal normal force, FNOMIN — Force scalar

Nominal rated wheel load along wheel-fixed *z*-axis, in N.

### Dependencies

To enable this parameter, set either:

- Longitudinal Force to Magic Formula pure longitudinal slip.
- Rolling Resistance to Magic Formula.

## Nominal rated load scaling factor, lam\_Fzo — Factor scalar

Nominal rated load scaling factor, dimensionless. Used to scale the normal for specific applications and load conditions.

#### Dependencies

To enable this parameter, set **Longitudinal Force** to Magic Formula pure longitudinal slip.

Wheel and unsprung mass, m — Mass scalar

Wheel and unsprung mass, in kg. Used in the vertical motion calculations.

#### Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

```
Initial deflection, zo — Deflection
scalar
```

Initial axle displacement along wheel-fixed *z*-axis, in m.

#### Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

```
Initial velocity, zdoto — Velocity
```

scalar

Initial axle velocity along wheel-fixed *z*-axis, in m.

#### Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

```
Gravitational acceleration, g — Gravity
scalar
```

Gravitational acceleration, in m/s<sup>2</sup>.

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

#### Ground displacement, Gndz - Displacement scalar

Ground displacement, Grndz, along negative wheel-fixed z-axis, in m.



### Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

#### **Mapped Stiffness and Damping**

#### Vertical deflection breakpoints, zFz — Breakpoints vector

Vector of sidewall deflection breakpoints corresponding to the force table, in m.

### Dependencies

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

#### Pressure breakpoints, pFz — Breakpoints vector

Vector of pressure data points corresponding to the force table, in Pa.

To enable this parameter, set **Vertical Motion** to Mapped stiffness and damping.

## Force due to deflection, Fzz — Force

vector

Force due to sidewall deflection and pressure along wheel-fixed *z*-axis, in N.

### Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

## Vertical velocity breakpoints, zdotFz - Breakpoints scalar

Vector of sidewall velocity breakpoints corresponding to the force due to velocity table, in m.

### Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

# Force due to velocity, Fzzdot — Force scalar

Force due to sidewall velocity and pressure along wheel-fixed *z*-axis, in N.

### Dependencies

To enable this parameter, set Vertical Motion to Mapped stiffness and damping.

### **Simulation Setup**

## Minimum normal force, FZMIN — Force scalar

Minimum normal force, in N. Used with all vertical force calculations.

Maximum normal force, FZMAX — Force scalar

Maximum normal force, in N. Used with all vertical force calculations.

Max allowable slip ratio (absolute), kappamax — Ratio
scalar

Maximum allowable absolute slip ratio, dimensionless.

# Velocity tolerance used to handle low velocity situations, VXLOW — Tolerance

scalar

Velocity tolerance used to handle low-velocity situations, in m/s.

### References

- [1] Highway Tire Committee. Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance. Standard J2452\_199906. Warrendale, PA: SAE International, June 1999.
- [2] Pacejka, H. B. *Tire and Vehicle Dynamics*. 3rd ed. Oxford, United Kingdom: SAE and Butterworth-Heinemann, 2012.
- [3] Schmid, Steven R., Bernard J. Hamrock, and Bo O. Jacobson. "Chapter 18: Brakes and Clutches." Fundamentals of Machine Elements, SI Version. 3rd ed. Boca Raton, FL: CRC Press, 2014.
- [4] Shigley, Joseph E., and Larry Mitchel. *Mechanical Engineering Design*. 4th ed. New York, NY: McGraw Hill, 1983.

## See Also

Drive Cycle Source | Longitudinal Driver

Introduced in R2017a

## **Planetary Gear**

Ideal planetary gear with sun, ring, and carrier Library: Drivetrain / Couplings



## Description

The Planetary Gear block implements an ideal planetary gear coupling consisting of a rigidly coupled sun, ring, and carrier gears. The block calculates the dynamic response to the sun, carrier, and ring input torques.



In fuel economy and powertrain studies, you can use the Planetary Gear block as a powersplit device by coupling it to common driveline elements such as transmissions, engines, clutches, and differentials.

These equations of motion represent the dynamic response of the planetary gear.

$$\begin{split} \dot{\omega}_s J_s &= \dot{\omega}_s b_s + T_s + T_{ps} \\ \dot{\omega}_c J_c &= \dot{\omega}_c b_c + T_c + T_{pc} \\ \dot{\omega}_s J_r &= \dot{\omega}_r b_r + T_r + T_{pr} \\ \dot{\omega}_p J_p &= \omega_p b_p + T_{rp} + T_{sp} + T_{cp} \end{split}$$

To reduce the equations of motion, the block uses these kinematic and geometric constraints.

$$\omega_c r_c = r_s \omega_s + r_p \omega_p$$
$$\omega_r r_r = r_c \omega_c + r_p \omega_p$$
$$r_c = r_s + r_p$$
$$r_r = r_c + r_p$$

The equations use these variables.

| $\omega_c$ , $\omega_p$ , $\omega_r$ , $\omega_s$ | Carrier, planet, ring, and sun gear angular speed                                                                              |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $r_c$ , $r_p$ , $r_r$ , $r_s$                     | Carrier, planet, ring, and sun gear angular radius $% \left( {{{\left( {{{{\bf{n}}_{{\rm{s}}}}} \right)}_{{\rm{s}}}}} \right)$ |
| $J_c$ , $J_p$ , $J_r$ , $J_s$                     | Carrier, planet, ring, and sun gear inertia                                                                                    |
| $T_c$ , $T_p$ , $T_r$ , $T_s$                     | Applied carrier, planet, ring, and sun gear torque                                                                             |
| $T_{ps}$                                          | Torque applied from planet gear on sun gear                                                                                    |
| $T_{pc}$                                          | Torque applied from planet gear on carrier gear                                                                                |
| $T_{pr}$                                          | Torque applied from planet gear on ring gear                                                                                   |
| $T_{rp}$                                          | Torque applied from ring gear on planet gear                                                                                   |
| $T_{sp}$                                          | Torque applied from sun gear on planet gear                                                                                    |
| $T_{cp}$                                          | Torque applied from carrier gear on planet gear                                                                                |

## Ports

### Input

SunTrq — Sun gear applied torque
scalar

Sun gear input torque,  $T_s$ , in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### CarrTrq — Carrier gear applied torque

scalar

Carrier gear input torque,  $T_c$ , in N.m.

#### Dependencies

To create this port, for **Port Configuration**, select Simulink.

## RingTrq — Ring gear applied torque

scalar

Ring gear applied torque,  $T_r$ , in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### C — Carrier gear angular speed and torque

two-way connector port

Carrier gear angular speed,  $\omega_c$ , in rad/s. Carrier gear applied torque,  $T_c$ , in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

### Output

## Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal     |  | Description                | Variable | Units |
|------------|--|----------------------------|----------|-------|
| Sun SunTrq |  | Sun gear applied<br>torque | $T_s$    | N.m   |

| Signal |         | Description                    | Variable       | Units |
|--------|---------|--------------------------------|----------------|-------|
|        | SunSpd  | Sun gear angular<br>speed      | $\omega_s$     | rad/s |
| Carr   | CarrTrq | Carrier gear applied<br>torque | T <sub>c</sub> | N.m   |
|        | CarrSpd | Carrier gear angular<br>speed  | $\omega_c$     | rad/s |
| Ring   | RingTrq | Ring gear applied<br>torque    | T <sub>r</sub> | N.m   |
|        | RingSpd | Ring gear angular<br>speed     | $\omega_r$     | rad/s |

### SunSpd — Sun gear angular speed

scalar

Sun gear angular speed,  $\omega_s$ , in rad/s.

#### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### CarrSpd — Carrier gear angular speed

scalar

Carrier gear angular speed,  $\omega_c$ , in rad/s.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

RingSpd — Ring gear angular speed

scalar

Ring gear angular speed,  $\omega_r$ , in rad/s.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### $\mathbf{S}-\mathbf{Sun}$ gear angular speed and torque

two-way connector port

Sun gear angular speed,  $\omega_s$ , in rad/s. Sun gear applied torque,  $T_s$ , in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

## **R** — **Ring gear angular speed and torque** two-way connector port

Ring gear angular speed,  $\omega_r$ , in rad/s. Ring gear applied torque,  $T_r$ , in N.m.

#### Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

## **Parameters**

### **Block Options**

### Port Configuration — Specify configuration

Simulink (default) | Two-way connection

### Specify the port configuration.

### Dependencies

Specifying Simulink creates these ports:

- SunTrq
- CarrTrq
- RingTrq
- SunSpd
- CarrSpd
- RingSpd

Specifying Two-way connection creates these ports:

- C
- S
- R

Sun to planet ratio, Nsp — Ratio
scalar

Sun-to-planet gear ratio, dimensionless.

Sun to ring ratio, Nsr — Ratio
scalar

Sun-to-ring gear ratio, dimensionless.

Sun inertia, Js — Inertia
scalar

Sun gear inertia,  $J_s$ , in kg\*m^2.

Planet inertia, Jp — Inertia
scalar

Planet gear inertia,  $J_p$ , in kg\*m<sup>2</sup>.

**Ring inertia**, **Jr** — **Inertia** scalar

Ring gear inertia,  $J_r$ , in kg\*m^2.

**Carrier inertia**, **Jc** — **Inertia** scalar

Carrier gear inertia,  $J_c$ , in kg\*m<sup>2</sup>.

Sun viscous damping, bs — Damping
scalar

Sun gear viscous damping,  $b_s$ , N·m· s/rad.

Ring viscous damping, br — Damping
scalar

Ring gear viscous damping,  $b_r$ , N·m· s/rad.

Planet viscous damping, bp — Damping
scalar

Planet gear viscous damping,  $b_p$ , N·m· s/rad.

```
Carrier viscous damping, bc — Damping
scalar
```

Carrier gear viscous damping,  $b_c$ , N·m· s/rad.

Initial sun velocity, ws\_o - Angular speed
scalar

Initial sun gear angular speed, in rad/s.

# Initial carrier velocity, wc\_o - Angular speed scalar

Initial carrier gear angular speed, in rad/s.

## See Also

Disc Clutch | Gearbox | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

## Gearbox

Ideal rotational gearbox Library: Drivetrain / Couplings



## Description

The Gearbox block implements an ideal rotational gearbox. The block uses the gear inertias and damping to calculate the velocity response to the base and follower gear pair input torques.

In fuel economy and powertrain efficiency studies, you can use the Gearbox block to model ideal gear coupling and the power transfer between common driveline elements such as transmissions, engines, clutches, and differentials.

The Gearbox block uses these equations to approximate the transmission dynamics.

$$\dot{\omega}_B J_B = \omega_B b_B + NT_F$$
$$\dot{\omega}_F J_F = \omega_F b_F + T_F$$

This constraint equation reduces the system to a 1 DOF system.

$$\omega_B = N \omega_F$$

To express the ideal torque transfer, the block uses this relationship.

$$NT_B + T_F = 0$$

The equations use these variables.

| $T_B$      | Base gear input torque                   |
|------------|------------------------------------------|
| $T_F$      | Follower gear output torque              |
| $\omega_B$ | Base gear angular velocity               |
| $\omega_F$ | Follower gear angular velocity           |
| $J_B$      | Base gear rotational inertia             |
| $J_F$      | Follower gear rotational inertia         |
| $b_B$      | Base gear rotational viscous damping     |
| $b_F$      | Follower gear rotational viscous damping |
| N          | Torque transmission gear ratio           |
|            |                                          |

## Ports

### Input

### BTrq — Base gear input torque

scalar

Base gear input torque,  $T_B$ , in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### FTrq — Follower gear output torque

scalar

Follower gear output torque,  $T_F$ , in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### ${\bf B}-{\bf B} {\bf ase}$ gear angular velocity and torque

two-way connector port

Base gear angular velocity,  $\omega_B$ , in rad/s. Base gear torque,  $T_B$ , in N.m.

To create this port, for **Port Configuration**, select Two-way connection.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal |         | Description                       | Variable   | Units |
|--------|---------|-----------------------------------|------------|-------|
| Base   | BaseTrq | Base gear input<br>torque         | $T_B$      | N.m   |
|        | BaseSpd | Base gear angular<br>velocity     | $\omega_B$ | rad/s |
| Flwr   | FlwrTrq | Follower gear torque              | $T_F$      | N.m   |
|        | FlwrSpd | Follower gear<br>angular velocity | $\omega_F$ | rad/s |

### BSpd — Base gear angular velocity

scalar

Base gear angular velocity,  $\omega_B$ , in rad/s.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

## FSpd — Follower gear angular velocity

scalar

Follower gear angular velocity,  $\omega_F$ , in rad/s.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### $\mathbf{F}-\mathbf{Follower}$ gear angular velocity and torque

two-way connector port

Follower gear angular velocity,  $\omega_F$ , in rad/s. Follower gear torque,  $T_F$ , in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

## **Parameters**

### **Block Options**

### Port Configuration — Specify configuration

Simulink (default) | Two-way connection

Specify the port configuration.

### Dependencies

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrg
- FTrg

Specifying Two-way connection creates these ports:

- B
- F

### Follower shaft rotates in same direction as input — Rotation off (default) | on

Select to specify that the output shaft rotates in the same direction as the input.

## Follower to base gear ratio, N - Ratio

scalar

Base-to-follower gear ratio, dimensionless.

#### Base shaft inertia, J1 — Inertia scalar

Base shaft inertia, in kg\*m^2.

Follower shaft inertia, J2 - Inertia
scalar

Follower shaft inertia, in kg\*m^2.

Base viscous shaft damping, b1 - Damping
scalar

Base viscous shaft damping, in  $N{\cdot}m{\cdot}$  s/rad.

Follower viscous shaft damping, b2 - Damping
scalar

Follower viscous shaft damping, in N·m· s/rad.

Base shaft initial velocity, w1\_o — Initial velocity
scalar

Base shaft initial velocity, in rad/s.

## See Also

Disc Clutch | Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

## **Disc Clutch**

Idealized disc clutch coupler Library: Drivetrain / Couplings



## Description

The Disc Clutch block implements an idealized disc clutch coupler. The block couples the rotary input and output shafts through an idealized friction model. To determine the output torque, the block uses friction parameters, relative slip velocity, and applied input pressure.

In fuel economy and powertrain efficiency studies, you can use the Disc Clutch block to model the mechanical power transfer between common driveline elements such as transmissions, engines, and differentials.

To approximate the torque response, the Disc Clutch block implements friction and dynamic models that depend on the clutch lockup condition. The block determines the locked or unlocked condition based on an idealized dry clutch friction model. This table summarizes the logic the block uses to determine the clutch condition.

| Clutch<br>Condition | When                                                                     |
|---------------------|--------------------------------------------------------------------------|
| Unlocked            |                                                                          |
|                     | $\omega_i \neq \omega_o$<br>or                                           |
|                     | $T_{fmax} < \frac{J_o T_i - (J_o b_i - J_i b_o)\omega_{i/o}}{J_o + J_i}$ |

| Clutch<br>Condition | When                         |
|---------------------|------------------------------|
| Locked              |                              |
|                     | $\omega_i = \omega_o$<br>and |

This table summations, the  $T_i$  is table summation  $T_i$  is table summation.  $T_i$  is table summation  $T_i$  is table summation.  $T_i$  is table summation  $T_i$  is table summation. The summation  $T_i$  is table summation  $T_i$  is table summation. The summation  $T_i$  is table summation  $T_i$  is table summation. The summation  $T_i$  is table summation  $T_i$  is table summation. The sum of  $T_i$  is table summation  $T_i$  is table summation. The sum of  $T_i$  is table sum of  $T_i$  is tabl

| Clutch<br>Condition                                                     | Friction Model                                                                              | Dynamic Model                                                   |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| Unlocked                                                                |                                                                                             |                                                                 |  |  |
|                                                                         |                                                                                             | $\dot{\omega}_i J_i = T_i - T_f - \omega_i b_i$                 |  |  |
|                                                                         | $T_{fmax} = T_k$                                                                            | $\dot{\omega}_o J_o = T_f + T_o - \omega_o b_o$                 |  |  |
|                                                                         | where,                                                                                      |                                                                 |  |  |
|                                                                         | $T_k = N_{disc} P_c A_{eff} R_{eff} \mu_k \tanh \left[ 4 \left( \omega_i - \right) \right]$ | $(\omega_o)$                                                    |  |  |
| Locked                                                                  | $R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$                                       | $\dot{\omega}_i (J_o + J_i) = T_o - \omega_i (b_i + b_o) + T_i$ |  |  |
|                                                                         | $T_{fmax} = T_s$                                                                            | $\omega_i = \omega_o$                                           |  |  |
|                                                                         | where,                                                                                      |                                                                 |  |  |
|                                                                         | $T_s = N_{disc} P_c A_{eff} R_{eff} \mu_s$                                                  |                                                                 |  |  |
| The equations us $\Re_{1}^{2(R^{3}-R^{3})}$<br>$3(R_{o}^{2}-R_{i}^{2})$ |                                                                                             |                                                                 |  |  |
| $\omega_i$ I:                                                           | nput shaft angular speed                                                                    |                                                                 |  |  |

- $\omega_o$  Output shaft angular speed
- *b<sub>i</sub>* Input shaft viscous damping
- *b*<sub>o</sub> Output shaft viscous damping
- *J<sub>i</sub>* Input shaft moment of inertia

| $J_o$             | Output shaft moment of inertia                                  |
|-------------------|-----------------------------------------------------------------|
| $T_{f}$           | Frictional torque                                               |
| $T_i$             | Net input torque                                                |
| $T_k$             | Kinetic frictional torque                                       |
| $T_o$             | Net output torque                                               |
| $T_s$             | Static frictional torque                                        |
| T <sub>fmax</sub> | Maximum frictional torque before slipping                       |
| $P_c$             | Applied clutch pressure                                         |
| $A_{e\!f\!f}$     | Effective area                                                  |
| $N_{disc}$        | Number of frictional discs                                      |
| $R_{e\!f\!f}$     | Effective clutch radius                                         |
| $R_o$             | Annular disk outer radius                                       |
| $R_i$             | Annular disk inner radius                                       |
| $R_e$             | Effective tire radius while under load and for a given pressure |
| $\mu_s$           | Coefficient of static friction                                  |
| $\mu_k$           | Coefficient of kinetic friction                                 |
|                   |                                                                 |

## Ports

### Input

### **Press — Applied clutch pressure**

scalar

Base gear input torque,  $P_c$ , in N.m<sup>2</sup>.

### BTrq — Applied input torque

scalar

Applied input torque,  $T_i$ , typically from the engine crankshaft or dual mass flywheel damper, in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### FTrq — Applied load torque

scalar

Applied load torque,  $T_o$ , typically from the differential or drive shaft, in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### **B** — Applied drive shaft angular speed and torque

two-way connector port

Applied drive shaft angular speed,  $\omega_i$ , in rad/s. Applied drive shaft torque,  $T_i$ , in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal |                 | Description                                                                                   | Variable              | Units |
|--------|-----------------|-----------------------------------------------------------------------------------------------|-----------------------|-------|
| Base   | BTrq            | Applied input torque, typically<br>from the engine crankshaft or<br>dual mass flywheel damper | T <sub>i</sub>        | N.m   |
|        | BSpd            | Applied drive shaft angular speed input                                                       | $\omega_i$            | rad/s |
| Flwr   | FTrq            | Applied load torque, typically from the differential                                          | T <sub>o</sub>        | N.m   |
|        | FSpd            | Drive shaft angular speed<br>output                                                           | ωο                    | rad/s |
| Cltch  | CltchFor<br>ce  | Applied clutch force                                                                          | <i>F</i> <sub>c</sub> | N     |
|        | CltchLoc<br>ked | Clutch lock status                                                                            | NA                    | NA    |

| Signal |                   | Description                             | Variable            | Units |
|--------|-------------------|-----------------------------------------|---------------------|-------|
|        | CltchSpd<br>Ratio | Clutch speed ratio                      | $\omega_o/\omega_i$ | NA    |
|        | CltchEta          | Clutch power transmission<br>efficiency | η                   | NA    |

### BSpd — Angular speed

scalar

Applied drive shaft angular speed input,  $\omega_i$ , in rad/s.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### FSpd — Angular speed

scalar

Drive shaft angular speed output,  $\omega_o$ , in rad/s.

### Dependencies

To create this port, for **Port Configuration**, select Simulink.

### F — Output velocity and torque

two-way connector port

Output drive shaft angular speed,  $\omega_{oi}$ , in rad/s. Output drive shaft torque,  $T_o$ , in N.m.

### Dependencies

To create this port, for **Port Configuration**, select Two-way connection.

## **Parameters**

**Block Options** 

Port Configuration — Specify configuration
Simulink (default) | Two-way connection

Specify the port configuration.

Specifying Simulink creates these ports:

- BSpd
- FSpd
- BTrq
- FTrq

Specifying Two-way connection creates these ports:

- B
- F

**Clutch force equivalent net radius, Reff — Radius** 

Clutch force equivalent net radius, in m.

### Number of disks, Ndisk — Ratio

scalar

Number of disks, dimensionless.

## Effective applied pressure area, Aeff - Pressure area scalar

Effective applied pressure area, in  $m^2$ .

**Input shaft inertia**, **Jin — Inertia** scalar

Input shaft inertia, in kg\*m^2.

# **Output shaft inertia, Jout — Inertia** scalar

Output shaft inertia, in kg\*m^2.

# Kinetic friction coefficient, muk - Coefficient scalar

Kinetic friction coefficient, dimensionless.

# Static friction coefficient, mus - Coefficient scalar

Static friction coefficient, dimensionless.

Input shaft viscous damping, bin — Damping
scalar

Input shaft viscous damping, in N·m· s/rad.

**Output shaft viscous damping, bout — Damping** scalar

Output shaft viscous damping, in N·m· s/rad.

Initial input shaft velocity, win\_o — Initial velocity
scalar

Input shaft initial velocity, in rad/s.

# Initial output shaft velocity, wout\_o — Initial velocity scalar

Input shaft initial velocity, in rad/s.

Clutch actuation time constant, tauC - Constant
scalar

Clutch actuation time constant, in s.

**Clutch initially locked — Select to initially lock clutch** off (default)

Select to lock clutch initially.

## See Also

Planetary Gear | Rotational Inertia | Torque Converter | Torsional Compliance

Introduced in R2017a

# Vehicle Dynamics Blocks — Alphabetical List

## Vehicle Body 1DOF Longitudinal

Two-axle vehicle in forward and reverse motion Library: Vehicle Dynamics



## Description

The Vehicle Body 1DOF Longitudinal block implements a one degree-of-freedom (1DOF) rigid vehicle body with constant mass undergoing longitudinal (that is, forward and reverse) motion. Use the block:

- In powertrain and fuel economy studies to represent the vehicle inertial and drag loads when weight transfer from vertical and pitch motions are negligible.
- To determine the engine torque and power required for the vehicle to follow a specified drive cycle.

## **Vehicle Body Model**

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). The grade angle changes the direction of the resolved gravitational force acting on the vehicle CG. Similarly, the block resolves the resistive aerodynamic drag force on the vehicle CG.


The Vehicle Body 1DOF Longitudinal block implements these equations.

$$\begin{split} m\dot{V}_x &= F_x - F_d - mg \cdot \sin\gamma \\ F_x &= N_f F_{xf} + N_r F_{xr} \\ F_d &= \frac{1}{2} C_d \rho A (V_x + V_w)^2 \cdot \operatorname{sgn}(V_x + V_w) \end{split}$$

Zero normal acceleration and zero pitch torque determine the normal force on each front and rear wheel.

$$F_{zf} = \frac{-h(F_d + mg\sin\gamma + m\dot{V_x}) + b \cdot mg\cos\gamma}{N_f(a+b)}$$

$$F_{zr} = \frac{+h(F_d + mg\sin\gamma + m\dot{V_x}) + a \cdot mg\cos\gamma}{N_r(a+b)}$$

The wheel normal forces satisfy this equation.

$$N_f F_{zf} + N_r F_{zr} = mg \cos \gamma$$

The equations use these variables.

| $F_{xf}$ , $F_{xr}$ | Longitudinal forces on each wheel at the front and rear ground contact points, respectively                               |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| $F_{zf}$ , $F_{zr}$ | Normal load forces on each wheel at the front and rear ground contact points, respectively                                |
| $F_d$               | Aerodynamic drag force                                                                                                    |
| $V_{\rm x}$         | Velocity of the vehicle. When $V_x > 0$ , the vehicle moves forward. When $V_x < 0$ , the vehicle moves backward.         |
| $V_w$               | Wind speed. When $V_{\rm w} > 0$ , the wind is headwind. When $V_{\rm w} < 0$ , the wind is tailwind.                     |
| $N_{f}$ , $N_{r}$   | Number of wheels on front and rear axle, respectively                                                                     |
| γ                   | Angle of road grade, in degrees                                                                                           |
| т                   | Vehicle body mass                                                                                                         |
| a,b                 | Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane |
| h                   | Height of vehicle CG above the axle plane                                                                                 |
| $C_d$               | Frontal air drag coefficient                                                                                              |
| Α                   | Frontal area                                                                                                              |
| ρ                   | Mass density of air                                                                                                       |
| g                   | Gravitational acceleration                                                                                                |

# Limitations

The Vehicle Body 1DOF Longitudinal block lets you model only longitudinal dynamics, parallel to the ground and oriented along the direction of motion. The vehicle is assumed to be in pitch and normal equilibrium. The block does not model pitch or vertical movement. To model a vehicle with three degrees-of-freedom (DOF), use the Vehicle Body 3DOF Longitudinal.

# Ports

## Input

### FwF — Total longitudinal force on front axle

scalar

Longitudinal force on the front axle,  $F_{xf}$ , along vehicle-fixed x-axis, in N.

## FwR — Total longitudinal force on rear axle

scalar

Longitudinal force on the rear axle,  $Fw_{R}$ , along vehicle-fixed x-axis, in N.

# Grade — Road grade angle

scalar

Road grade angle,  $\gamma$  , in deg.

# WindX — Longitudinal wind speed scalar

Longitudinal wind speed,  $V_w$ , along vehicle-fixed x-axis, in m/s.

## Output

# Info — Bus signal bus

Bus signal containing these block values.

| Signal       |    |      |   | Description                                            | Value        | Units |
|--------------|----|------|---|--------------------------------------------------------|--------------|-------|
| InertFr<br>m | Cg | Disp | Х | Vehicle CG<br>displacement along<br>earth-fixed X-axis | Compute<br>d | m     |
|              |    |      | Y | Vehicle CG<br>displacement along<br>earth-fixed Y-axis | 0            | m     |

| Signal |             |      |       | Description                                                            | Value                                    | Units |
|--------|-------------|------|-------|------------------------------------------------------------------------|------------------------------------------|-------|
|        |             |      | Z     | Vehicle CG<br>displacement along<br>earth-fixed Z-axis                 | Compute<br>d                             | m     |
|        |             | Vel  | Xdot  | Vehicle CG velocity<br>along earth-fixed X-axis                        | Compute<br>d                             | m/s   |
|        |             |      | Ydot  | Vehicle CG velocity<br>along earth-fixed Y-axis                        | 0                                        | m/s   |
|        |             |      | Zdot  | Vehicle CG velocity<br>along earth-fixed Z-axis                        | Compute<br>d                             | m/s   |
|        |             | Ang  | phi   | Rotation of vehicle-fixed<br>frame about earth-fixed<br>X-axis (roll)  | 0                                        | rad   |
|        |             |      | theta | Rotation of vehicle-fixed<br>frame about earth-fixed<br>Y-axis (pitch) | Compute<br>d (input -<br>grade<br>angle) | rad   |
|        |             |      | psi   | Rotation of vehicle-fixed<br>frame about earth-fixed<br>Z-axis (yaw)   | 0                                        | rad   |
|        | FrntAx<br>l | Disp | Х     | Front axle displacement<br>along the earth-fixed X-<br>axis            | Compute<br>d                             | m     |
|        |             |      | Y     | Front axle displacement<br>along the earth-fixed Y-<br>axis            | 0                                        | m     |
|        |             |      | Z     | Front axle displacement<br>along the earth-fixed Z-<br>axis            | Compute<br>d                             | m     |
|        |             | Vel  | Xdot  | Front axle velocity along the earth-fixed X-axis                       | Compute<br>d                             | m/s   |
|        |             |      | Ydot  | Front axle velocity along the earth-fixed Y-axis                       | 0                                        | m/s   |

| Signal |             |      |      | Description                                                | Value        | Units |
|--------|-------------|------|------|------------------------------------------------------------|--------------|-------|
|        |             |      | Zdot | Front axle velocity along the earth-fixed Z-axis           | Compute<br>d | m/s   |
|        | RearAx<br>l | Disp | Х    | Rear axle displacement<br>along the earth-fixed X-<br>axis | Compute<br>d | m     |
|        |             |      | Y    | Rear axle displacement<br>along the earth-fixed Y-<br>axis | 0            | m     |
|        |             |      | Z    | Rear axle displacement<br>along the earth-fixed Z-<br>axis | Compute<br>d | m     |
|        |             | Vel  | Xdot | Rear axle velocity along the earth-fixed X-axis            | Compute<br>d | m/s   |
|        |             |      | Ydot | Rear axle velocity along the earth-fixed Y-axis            | 0            | m/s   |
|        |             |      | Zdot | Rear axle velocity along the earth-fixed Z-axis            | Compute<br>d | m/s   |
| BdyFrm | Cg          | Disp | x    | Vehicle CG<br>displacement along<br>vehicle-fixed x-axis   | Compute<br>d | m     |
|        |             |      | У    | Vehicle CG<br>displacement along<br>vehicle-fixed y-axis   | 0            | m     |
|        |             |      | Z    | Vehicle CG<br>displacement along<br>vehicle-fixed z-axis   | 0            | m     |
|        |             | Vel  | xdot | Vehicle CG velocity<br>along vehicle-fixed x-<br>axis      | Compute<br>d | m/s   |
|        |             |      | ydot | Vehicle CG velocity<br>along vehicle-fixed y-<br>axis      | 0            | m/s   |

| Signal |        |           |      | Description                                                                | Value        | Units |
|--------|--------|-----------|------|----------------------------------------------------------------------------|--------------|-------|
|        |        |           | zdot | Vehicle CG velocity<br>along vehicle-fixed z-<br>axis                      | 0            | m/s   |
|        |        | AngVel    | р    | Vehicle angular velocity<br>about the vehicle-fixed<br>x-axis (roll rate)  | 0            | rad/s |
|        |        |           | q    | Vehicle angular velocity<br>about the vehicle-fixed<br>y-axis (pitch rate) | 0            | rad/s |
|        |        |           | r    | Vehicle angular velocity<br>about the vehicle-fixed<br>z-axis (yaw rate)   | 0            | rad/s |
|        |        | Accel     | ax   | Vehicle CG acceleration<br>along vehicle-fixed x-<br>axis                  | Compute<br>d | gn    |
|        |        |           | ау   | Vehicle CG acceleration<br>along vehicle-fixed y-<br>axis                  | 0            | gn    |
|        |        |           | az   | Vehicle CG acceleration<br>along vehicle-fixed z-<br>axis                  | 0            | gn    |
|        | Forces | rces Body | Fx   | Net force on vehicle CG<br>along vehicle-fixed x-<br>axis                  | 0            | N     |
|        |        |           | Fy   | Net force on vehicle CG<br>along vehicle-fixed y-<br>axis                  | 0            | N     |
|        |        |           | Fz   | Net force on vehicle CG<br>along vehicle-fixed z-<br>axis                  | 0            | N     |
|        |        | Ext       | Fx   | External force on<br>vehicle CG along<br>vehicle-fixed x-axis              | 0            | N     |

| Signal |             |              |        | Description                                                            | Value        | Units |
|--------|-------------|--------------|--------|------------------------------------------------------------------------|--------------|-------|
|        |             | Fy           |        | External force on<br>vehicle CG along<br>vehicle-fixed y-axis          | 0            | N     |
|        |             | Fz           |        | External force on<br>vehicle CG along<br>vehicle-fixed z-axis          | 0            | N     |
|        | FrntAx<br>l | Fx           |        | Longitudinal force on<br>front axle, along the<br>vehicle-fixed x-axis | 0            | N     |
|        |             | Fy           |        | Lateral force on front<br>axle, along the vehicle-<br>fixed y-axis     | Θ            | N     |
|        |             | Fz           |        | Normal force on front<br>axle, along the vehicle-<br>fixed z-axis      | Compute<br>d | N     |
|        | RearAx<br>l | Fx           |        | Longitudinal force on<br>rear axle, along the<br>vehicle-fixed x-axis  | 0            | N     |
|        |             | Fy           |        | Lateral force on rear<br>axle, along the vehicle-<br>fixed y-axis      | 0            | N     |
|        |             | Fz           |        | Normal force on rear<br>axle, along the vehicle-<br>fixed z-axis       | Compute<br>d | N     |
|        | Tires       | FrntTi<br>re | F<br>x | Front tire force, along<br>vehicle-fixed x-axis                        | Θ            | N     |
|        |             |              | F<br>У | Front tire force, along vehicle-fixed y-axis                           | Θ            | N     |
|        |             |              | F<br>z | Front tire force, along vehicle-fixed z-axis                           | Compute<br>d | N     |
|        |             | RearTi<br>re | F<br>x | Rear tire force, along<br>vehicle-fixed x-axis                         | 0            | Ν     |

| Signal |               |        |      |        | Description                                                  | Value        | Units |
|--------|---------------|--------|------|--------|--------------------------------------------------------------|--------------|-------|
|        |               |        |      | F<br>y | Rear tire force, along<br>vehicle-fixed y-axis               | 0            | N     |
|        |               |        |      | F<br>z | Rear tire force, along<br>vehicle-fixed z-axis               | Compute<br>d | Ν     |
|        |               | Drag   | Fx   |        | Drag force on vehicle<br>CG along vehicle-fixed<br>x-axis    | Compute<br>d | N     |
|        |               |        | Fy   |        | Drag force on vehicle<br>CG along vehicle-fixed<br>y-axis    | Compute<br>d | N     |
|        |               |        | Fz   |        | Drag force on vehicle<br>CG along vehicle-fixed<br>z-axis    | Compute<br>d | N     |
|        |               | Grvty  | Fx   |        | Gravity force on vehicle<br>CG along vehicle-fixed<br>x-axis | Compute<br>d | N     |
|        |               |        | Fy   |        | Gravity force on vehicle<br>CG along vehicle-fixed<br>y-axis | 0            | N     |
|        |               |        | Fz   |        | Gravity force on vehicle<br>CG along vehicle-fixed<br>z-axis | Compute<br>d | N     |
|        | FrntAx  <br>l | x Disp | x    |        | Front axle displacement<br>along the vehicle-fixed<br>x-axis | Compute<br>d | m     |
|        |               |        | У    |        | Front axle displacement<br>along the vehicle-fixed<br>y-axis | 0            | m     |
|        |               |        | Z    |        | Front axle displacement<br>along the vehicle-fixed<br>z-axis | Compute<br>d | m     |
|        |               | Vel    | xdot |        | Front axle velocity along the vehicle-fixed x-axis           | Compute<br>d | m/s   |

| Signal  |             |             |      | Description                                                 | Value        | Units |
|---------|-------------|-------------|------|-------------------------------------------------------------|--------------|-------|
|         |             |             | ydot | Front axle velocity along the vehicle-fixed y-axis          | 0            | m/s   |
|         |             |             | zdot | Front axle velocity along the vehicle-fixed z-axis          | Compute<br>d | m/s   |
| Re<br>l | RearAx<br>l | Disp<br>Vel | x    | Rear axle displacement<br>along the vehicle-fixed<br>x-axis | Compute<br>d | m     |
|         |             |             | У    | Rear axle displacement<br>along the vehicle-fixed<br>y-axis | 0            | m     |
|         |             |             | Z    | Rear axle displacement<br>along the vehicle-fixed<br>z-axis | Compute<br>d | m     |
|         |             |             | xdot | Rear axle velocity along the vehicle-fixed x-axis           | Compute<br>d | m/s   |
|         |             |             | ydot | Rear axle velocity along the vehicle-fixed y-axis           | Θ            | m/s   |
|         |             |             | zdot | Rear axle velocity along the vehicle-fixed z-axis           | Compute<br>d | m/s   |
|         | Pwr         | PwrExt      | •    | Applied external power                                      | Compute<br>d | W     |
|         |             | Drag        |      | Power loss due to drag                                      | Compute<br>d | W     |

### xdot — Vehicle body longitudinal velocity

scalar

Vehicle body longitudinal velocity along the earth-fixed reference frame X-axis, in m/s.

### FzF — Front axle normal force

scalar

Normal load force on the front axle,  $F_{zf}$ , along vehicle-fixed z-axis, in N.

### FzR — Rear axle normal force

scalar

Normal force on rear axle,  $F_{zr}$ , along vehicle-fixed z-axis, in N.

## **Parameters**

Longitudinal

Number of wheels on front axle, NF — Front wheel count scalar

Number of wheels on front axle,  $N_F$ , dimensionless.

Number of wheels on rear axle, NR — Rear wheel count scalar

Number of wheels on rear axle,  $N_R$ , dimensionless.

### Mass, m — Vehicle mass

scalar

Vehicle mass, M, in kg.

# Horizontal distance from CG to front axle, a — Front axle distance scalar

Horizontal distance *a* from the vehicle CG to the front wheel axle, in m.

# Horizontal distance from CG to rear axle, b — Rear axle distance scalar

Horizontal distance *b* from the vehicle CG to the rear wheel axle, in m.

# CG height above axles, h — Height scalar

Height of vehicle CG above the ground, h, in m.

Drag coefficient, Cd — Drag
scalar

Air drag coefficient,  $C_d$ .

### Frontal area, Af — Area

scalar

Effective vehicle cross-sectional area, A, to calculate the aerodynamic drag force on the vehicle, in m^2.

# Initial position, x\_o - Position scalar

Vehicle body longitudinal initial position along the vehicle-fixed x-axis,  $x_o$ , in m.

# Initial velocity, xdot\_o - Velocity scalar

Vehicle body longitudinal initial velocity along the vehicle-fixed x-axis,  $\dot{x}_0$ , in m/s.

#### Environment

```
Absolute Pressure, Pabs — Pressure scalar
```

Environmental absolute pressure, *P*, in Pa.

Air Temp, T — Temperature scalar

Environmental absolute temperature, *T*, in K.

# Gravitational acceleration, g — Gravity scalar

Gravitational acceleration, g, in m/s<sup>^</sup>.

# See Also

Vehicle Body 3DOF Longitudinal | Vehicle Body Total Road Load

### Introduced in R2017a

# **Vehicle Body 3DOF Longitudinal**

3DOF rigid vehicle body to calculate longitudinal, vertical, and pitch motion Library: Vehicle Dynamics



## Description

The Vehicle Body 3DOF Longitudinal block implements a three degrees-of-freedom (3DOF) rigid vehicle body model with configurable axle stiffness to calculate longitudinal, vertical, and pitch motion. The block accounts for body mass, aerodynamic drag, road incline, and weight distribution between the axles due to acceleration and the road profile.

You can specify the type of axle attachment to the vehicle:

- Grade angle Vertical axle displacement from road surface to axles remains constant. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axles.
- Axle displacement Axles have input-provided vertical displacement and velocity with respect to the road grade. The block uses tabular stiffness and damping parameters to model the suspension forces acting between the vehicle body and axle.
- External suspension Axles have externally applied forces for coupling the vehicle body to custom suspension models.

If the weight transfer from vertical and pitch motions are not negligible, consider using this block to represent vehicle motion in powertrain and fuel economy studies. For example, in studies with heavy breaking or acceleration or road profiles that contain larger vertical changes.

The block uses rigid-body vehicle motion, suspension system forces, and wind and drag forces to calculate the normal forces on the front and rear axles. The block resolves the force components and moments on the rigid vehicle body frame:

$$\begin{split} F_{x} &= F_{wF} + F_{wR} - F_{d,x} - F_{sx,F} - F_{sx,R} + F_{g,x} \\ F_{z} &= F_{d,z} - F_{sz,F} - F_{sz,R} + F_{g,z} \\ M_{y} &= aF_{sz,F} - bF_{sz,R} + h\left(F_{wF} + F_{wR} + F_{sx,F} + F_{sx,R}\right) - M_{d,y} \end{split}$$



The equations use these variables.

| Longitudinal force on vehicle                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------|
| Normal force on vehicle                                                                                                   |
| Torque on vehicle about vehicle-fixed y-axis                                                                              |
| Longitudinal force on front and rear axles along vehicle-fixed x-axis                                                     |
| Longitudinal and normal drag force on vehicle CG                                                                          |
| Longitudinal suspension force on front and rear axles                                                                     |
| Normal suspension force on front and rear axles                                                                           |
| Longitudinal and normal gravitational force on vehicle along vehicle-fixed frame                                          |
| Torque due to drag on vehicle about vehicle-fixed y-axis                                                                  |
| Distance of front and rear axles, respectively, from the normal projection point of vehicle CG onto the common axle plane |
| Height of vehicle CG above the axle plane along vehicle-fixed z-axis                                                      |
| Front and rear axle suspension force along vehicle-fixed z-axis                                                           |
|                                                                                                                           |

| $Z_{wF}$ , $Z_{wR}$               | Front and rear vehicle normal position along earth-fixed Z-axis                      |
|-----------------------------------|--------------------------------------------------------------------------------------|
| Θ                                 | Vehicle pitch angle about vehicle-fixed y-axis                                       |
| т                                 | Vehicle body mass                                                                    |
| $N_F$ , $N_R$                     | Number of front and rear wheels                                                      |
| I <sub>yy</sub>                   | Vehicle body moment of inertia about the vehicle-fixed y-axis                        |
| x, ż, ż                           | Vehicle longitudinal position, velocity, and acceleration along vehicle-fixed x-axis |
| $z,\dot{z},\ddot{z}$              | Vehicle normal position, velocity, and acceleration along vehicle-fixed z-axis       |
| Fk <sub>F</sub> , Fk <sub>R</sub> | Front and rear wheel suspension stiffness force along vehicle-fixed z-axis           |
| $Fb_F$ , $Fb_R$                   | Front and rear wheel suspension damping force along vehicle-fixed z-axis             |
| $Z_F$ , $Z_R$                     | Front and rear vehicle vertical position along earth-fixed Z-axis                    |
| $\dot{Z}_F, \dot{Z}_R$            | Front and rear vehicle vertical velocity along vehicle-fixed z-axis                  |
| $ar{Z}_F,ar{Z}_R$                 | Front and rear wheel axle vertical position along vehicle-fixed z-axis               |
| $ar{Z}_F, ar{Z}_R$                | Front and rear wheel axle vertical velocity along earth-fixed z-axis                 |
| $dZ_F$ , $dZ_R$                   | Front and rear axle suspension deflection along vehicle-fixed z-axis                 |
| $d\dot{Z}_F, d\dot{Z}_R$          | Front and rear axle suspension deflection rate along vehicle-fixed z-axis            |
| $C_d$                             | Frontal air drag coefficient acting along vehicle-fixed x-axis                       |
| $C_l$                             | Lateral air drag coefficient acting along vehicle-fixedz-axis                        |
| $C_{pm}$                          | Air drag pitch moment acting about vehicle-fixed y-axis                              |
| $A_f$                             | Frontal area                                                                         |
| $P_{abs}$                         | Environmental absolute pressure                                                      |
| R                                 | Atmospheric specific gas constant                                                    |
| Т                                 | Environmental air temperature                                                        |
| w                                 | Wind speed along vehicle-fixed axis                                                  |

## **Rigid-Body Vehicle Motion**

The vehicle axles are parallel and form a plane. The longitudinal direction lies in this plane and is perpendicular to the axles. If the vehicle is traveling on an inclined slope, the normal direction is not parallel to gravity but is always perpendicular to the axle-longitudinal plane.

The block uses the net effect of all the forces and torques acting on it to determine the vehicle motion. The longitudinal tire forces push the vehicle forward or backward. The weight of the vehicle acts through its center of gravity (CG). Depending on the inclined angle, the weight pulls the vehicle to the ground and either forward or backward. Whether the vehicle travels forward or backward, aerodynamic drag slows it down. For simplicity, the drag is assumed to act through the CG.

The Vehicle Body 3DOF Longitudinal implements these equations.

$$\ddot{x} = \frac{F_x}{m} - qz$$
$$\ddot{z} = \frac{F_z}{m} - qx$$
$$\dot{q} = \frac{M_y}{I_{yy}}$$
$$\dot{\theta} = q$$

### **Suspension System Forces**

If you configure the block with the **Ground interaction type** parameter Grade angle or Axle displacement, velocity, the block uses nonlinear stiffness and damping parameters to model the suspension system.

The front and rear axle suspension forces are given by:

$$Fs_F = N_F [Fk_F + Fb_F]$$
  
$$Fs_R = N_R [Fk_R + Fb_R]$$

The block uses lookup tables to implement the front and rear suspension stiffness. To account for kinematic and material nonlinearities, including collisions with end-stops, the tables are functions of the stroke.

 $Fk_F = f(dZ_F)$  $Fk_R = f(dZ_R)$ 

The block uses lookup tables to implement the front and rear suspension damping. To account for nonlinearities, compression, and rebound, the tables are functions of the stroke rate.

$$Fb_F = f(d\dot{Z}_F)$$
$$Fb_R = f(d\dot{Z}_R)$$

The stroke is the difference in the vehicle vertical and axle positions. The stroke rate is the difference in the vertical and axle velocities.

$$\begin{split} dZ_F &= Z_F - \overline{Z}_F \\ dZ_R &= Z_R - \overline{Z}_R \\ d\dot{Z}_F &= \dot{Z}_F - \dot{\overline{Z}}_F \\ d\dot{Z}_R &= \dot{Z}_R - \dot{\overline{Z}}_R \end{split}$$

When the Ground interaction type parameter is Grade angle, the axle vertical

positions ( $\bar{Z}_F, \bar{Z}_R$ ) and velocities ( $\dot{Z}_F, \dot{Z}_R$ ) are set to 0.

### Wind and Drag Forces

The block subtracts the wind speeds from the vehicle velocity components to obtain a net relative airspeed. To calculate the drag force and moments acting on the vehicle, the block uses the net relative airspeed:

$$\begin{split} F_{d,x} &= \frac{1}{2TR} C_d A_f P_{abs} (\dot{x} - w)^2 \\ F_{d,z} &= \frac{1}{2TR} C_l A_f P_{abs} (\dot{x} - w)^2 \\ M_{d,y} &= \frac{1}{2TR} C_{pm} A_f P_{abs} (\dot{x} - w)^2 (a + b) \end{split}$$

## **Ports**

## Input

### FwF — Total longitudinal force on the front axle

scalar

Longitudinal force on the front axle,  $Fw_F$ , along vehicle-fixed x-axis, in N.

## FwR — Total longitudinal force on the rear axle

scalar

Longitudinal force on the rear axle,  $Fw_R$ , along vehicle-fixed x-axis, in N.

## Grade — Road grade angle

scalar

Road grade angle,  $\gamma$ , in deg.

### FsF — Suspension force on front axle per wheel

vector

Suspension force on front axle,  $Fs_{F}$ , along vehicle-fixed z-axis, in N.

### Dependencies

To create this port, for the **Ground interaction type** parameter, select External suspension.

### FsR — Suspension force on rear axle per wheel

vector

Suspension force on rear axle,  $Fs_R$ , along vehicle-fixed z-axis, in N.

### Dependencies

To create this port, for the **Ground interaction type** parameter, select External suspension.

# WindXYZ — Wind speed

vector

Longitudinal wind speed,  $V_{windxyz}$ , in m/s.

### zF, R — Forward and rear axle positions

vector

Forward and rear axle positions along the vehicle-fixed z-axis,  $\bar{Z}_F, \bar{Z}_R$ , in m.

#### Dependencies

To create this port, for the **Ground interaction type** parameter, select Axle displacement, velocity.

### ${\tt zdotF}$ , ${\tt R}$ — Forward and rear axle velocities

vector

Forward and rear axle velocities along the vehicle-fixed z-axis,  $\dot{Z}_F, \dot{Z}_R$ , in m/s.

#### Dependencies

To create this port, for the **Ground interaction type** parameter, select Axle displacement, velocity.

## Output

### Info — Bus signal

bus

Bus signal containing these block values.

| Signal       |    |      |   | Description                                            | Value        | Units |
|--------------|----|------|---|--------------------------------------------------------|--------------|-------|
| InertFr<br>m | Cg | Disp | Х | Vehicle CG<br>displacement along<br>earth-fixed X-axis | Compute<br>d | m     |
|              |    |      | Y | Vehicle CG<br>displacement along<br>earth-fixed Y-axis | 0            | m     |

| Signal |             |      |       | Description                                                            | Value        | Units |
|--------|-------------|------|-------|------------------------------------------------------------------------|--------------|-------|
|        |             |      | Z     | Vehicle CG<br>displacement along<br>earth-fixed Z-axis                 | Compute<br>d | m     |
|        |             | Vel  | Xdot  | Vehicle CG velocity<br>along earth-fixed X-axis                        | Compute<br>d | m/s   |
|        |             |      | Ydot  | Vehicle CG velocity<br>along earth-fixed Y-axis                        | Θ            | m/s   |
|        |             |      | Zdot  | Vehicle CG velocity<br>along earth-fixed Z-axis                        | Compute<br>d | m/s   |
|        |             | Ang  | phi   | Rotation of vehicle-fixed<br>frame about earth-fixed<br>X-axis (roll)  | 0            | rad   |
|        |             |      | theta | Rotation of vehicle-fixed<br>frame about earth-fixed<br>Y-axis (pitch) | Compute<br>d | rad   |
|        |             |      | psi   | Rotation of vehicle-fixed<br>frame about earth-fixed<br>Z-axis (yaw)   | 0            | rad   |
|        | FrntAx<br>l | Disp | X     | Front axle displacement<br>along the earth-fixed X-<br>axis            | Compute<br>d | m     |
|        |             |      | Y     | Front axle displacement<br>along the earth-fixed Y-<br>axis            | 0            | m     |
|        |             |      | Z     | Front axle displacement<br>along the earth-fixed Z-<br>axis            | Compute<br>d | m     |
|        |             | Vel  | Xdot  | Front axle velocity along the earth-fixed X-axis                       | Compute<br>d | m/s   |
|        |             |      | Ydot  | Front axle velocity along the earth-fixed Y-axis                       | Θ            | m/s   |
|        |             |      | Zdot  | Front axle velocity along the earth-fixed Z-axis                       | Compute<br>d | m/s   |

| Signal |             |      |      | Description                                                | Value        | Units |
|--------|-------------|------|------|------------------------------------------------------------|--------------|-------|
|        | RearAx<br>l | Disp | X    | Rear axle displacement<br>along the earth-fixed X-<br>axis | Compute<br>d | m     |
|        |             |      | Y    | Rear axle displacement<br>along the earth-fixed Y-<br>axis | 0            | m     |
|        |             |      | Z    | Rear axle displacement<br>along the earth-fixed Z-<br>axis | Compute<br>d | m     |
|        |             | Vel  | Xdot | Rear axle velocity along the earth-fixed X-axis            | Compute<br>d | m/s   |
|        |             |      | Ydot | Rear axle velocity along the earth-fixed Y-axis            | Θ            | m/s   |
|        |             |      | Zdot | Rear axle velocity along the earth-fixed Z-axis            | Compute<br>d | m/s   |
| BdyFrm | Cg          | Disp | x    | Vehicle CG<br>displacement along<br>vehicle-fixed x-axis   | Compute<br>d | m     |
|        |             |      | У    | Vehicle CG<br>displacement along<br>vehicle-fixed y-axis   | 0            | m     |
|        |             |      | Z    | Vehicle CG<br>displacement along<br>vehicle-fixed z-axis   | Compute<br>d | m     |
|        |             | Vel  | xdot | Vehicle CG velocity<br>along vehicle-fixed x-<br>axis      | Compute<br>d | m/s   |
|        |             |      | ydot | Vehicle CG velocity<br>along vehicle-fixed y-<br>axis      | 0            | m/s   |
|        |             |      | zdot | Vehicle CG velocity<br>along vehicle-fixed z-<br>axis      | Compute<br>d | m/s   |

| Signal |        |        | Description | Value                                                                      | Units        |       |
|--------|--------|--------|-------------|----------------------------------------------------------------------------|--------------|-------|
|        |        | AngVel | p           | Vehicle angular velocity<br>about the vehicle-fixed<br>x-axis (roll rate)  | 0            | rad/s |
|        |        |        | q           | Vehicle angular velocity<br>about the vehicle-fixed<br>y-axis (pitch rate) | Compute<br>d | rad/s |
|        |        |        | r           | Vehicle angular velocity<br>about the vehicle-fixed<br>z-axis (yaw rate)   | 0            | rad/s |
|        |        | Accel  | ax          | Vehicle CG acceleration<br>along vehicle-fixed x-<br>axis                  | Compute<br>d | gn    |
|        |        |        | ay          | Vehicle CG acceleration<br>along vehicle-fixed y-<br>axis                  | 0            | gn    |
|        |        |        | az          | Vehicle CG acceleration<br>along vehicle-fixed z-<br>axis                  | Compute<br>d | gn    |
|        | Forces | Body   | Fx          | Net force on vehicle CG<br>along vehicle-fixed x-<br>axis                  | Compute<br>d | N     |
|        |        |        | Fy          | Net force on vehicle CG<br>along vehicle-fixed y-<br>axis                  | 0            | N     |
|        |        |        | Fz          | Net force on vehicle CG<br>along vehicle-fixed z-<br>axis                  | Compute<br>d | N     |
|        |        | Ext    | Fx          | External force on<br>vehicle CG along<br>vehicle-fixed x-axis              | 0            | N     |
|        |        |        | Fy          | External force on<br>vehicle CG along<br>vehicle-fixed y-axis              | 0            | N     |

| Signal |  |             |              | Description | Value                                                                  | Units        |   |
|--------|--|-------------|--------------|-------------|------------------------------------------------------------------------|--------------|---|
|        |  |             | Fz           |             | External force on<br>vehicle CG along<br>vehicle-fixed z-axis          | 0            | N |
|        |  | FrntAx<br>l | Fx           |             | Longitudinal force on<br>front axle, along the<br>vehicle-fixed x-axis | Compute<br>d | N |
|        |  |             | Fy           |             | Lateral force on front<br>axle, along the vehicle-<br>fixed y-axis     | 0            | N |
|        |  |             | Fz           |             | Normal force on front<br>axle, along the vehicle-<br>fixed z-axis      | Compute<br>d | N |
|        |  | RearAx<br>l | Fx           |             | Longitudinal force on<br>rear axle, along the<br>vehicle-fixed x-axis  | Compute<br>d | N |
|        |  |             | Fy           |             | Lateral force on rear<br>axle, along the vehicle-<br>fixed y-axis      | 0            | N |
|        |  |             | Fz           |             | Normal force on rear<br>axle, along the vehicle-<br>fixed z-axis       | Compute<br>d | N |
|        |  | Tires       | FrntTi<br>re | F<br>X      | Front tire force, along<br>vehicle-fixed x-axis                        | 0            | N |
|        |  |             |              | F<br>У      | Front tire force, along<br>vehicle-fixed y-axis                        | 0            | N |
|        |  |             |              | F<br>z      | Front tire force, along<br>vehicle-fixed z-axis                        | Compute<br>d | N |
|        |  |             | RearTi<br>re | F<br>X      | Rear tire force, along<br>vehicle-fixed x-axis                         | 0            | N |
|        |  |             |              | F<br>У      | Rear tire force, along vehicle-fixed y-axis                            | 0            | N |
|        |  |             |              | F<br>z      | Rear tire force, along<br>vehicle-fixed z-axis                         | Compute<br>d | Ν |

| Signal |        |       |    | Description                                                  | Value        | Units |
|--------|--------|-------|----|--------------------------------------------------------------|--------------|-------|
|        |        | Drag  | Fx | Drag force on vehicle<br>CG along vehicle-fixed<br>x-axis    | Compute<br>d | N     |
|        |        |       | Fy | Drag force on vehicle<br>CG along vehicle-fixed<br>y-axis    | Compute<br>d | N     |
|        |        |       | Fz | Drag force on vehicle<br>CG along vehicle-fixed<br>z-axis    | Compute<br>d | N     |
|        |        | Grvty | Fx | Gravity force on vehicle<br>CG along vehicle-fixed<br>x-axis | Compute<br>d | N     |
|        |        |       | Fy | Gravity force on vehicle<br>CG along vehicle-fixed<br>y-axis | 0            | N     |
|        |        |       | Fz | Gravity force on vehicle<br>CG along vehicle-fixed<br>z-axis | Compute<br>d | N     |
|        | Moment | Body  | Mx | Body moment on vehicle<br>CG about vehicle-fixed<br>x-axis   | 0            | N∙m   |
|        |        |       | Му | Body moment on vehicle<br>CG about vehicle-fixed<br>y-axis   | Compute<br>d | N∙m   |
|        |        |       | Mz | Body moment on vehicle<br>CG about vehicle-fixed<br>z-axis   | 0            | N∙m   |
|        |        | Drag  | Mx | Drag moment on vehicle<br>CG about vehicle-fixed<br>x-axis   | 0            | N·m   |
|        |        |       | My | Drag moment on vehicle<br>CG about vehicle-fixed<br>y-axis   | Compute<br>d | N·m   |

| Signal |             |      | Description | Value                                                        | Units        |     |
|--------|-------------|------|-------------|--------------------------------------------------------------|--------------|-----|
|        |             |      | Mz          | Drag moment on vehicle<br>CG about vehicle-fixed<br>z-axis   | 0            | N·m |
|        | FrntAx<br>l | Disp | x           | Front axle displacement<br>along the vehicle-fixed<br>x-axis | Compute<br>d | m   |
|        |             |      | У           | Front axle displacement<br>along the vehicle-fixed<br>y-axis | 0            | m   |
|        |             |      | Z           | Front axle displacement<br>along the vehicle-fixed<br>z-axis | Compute<br>d | m   |
|        |             | Vel  | xdot        | Front axle velocity along the vehicle-fixed x-axis           | Compute<br>d | m/s |
|        |             |      | ydot        | Front axle velocity along the vehicle-fixed y-axis           | 0            | m/s |
|        |             |      | zdot        | Front axle velocity along the vehicle-fixed z-axis           | Compute<br>d | m/s |
|        | RearAx<br>l | Disp | x           | Rear axle displacement<br>along the vehicle-fixed<br>x-axis  | Compute<br>d | m   |
|        |             |      | У           | Rear axle displacement<br>along the vehicle-fixed<br>y-axis  | 0            | m   |
|        |             |      | Z           | Rear axle displacement<br>along the vehicle-fixed<br>z-axis  | Compute<br>d | m   |
|        |             | Vel  | xdot        | Rear axle velocity along the vehicle-fixed x-axis            | Compute<br>d | m/s |
|        |             |      | ydot        | Rear axle velocity along the vehicle-fixed y-axis            | 0            | m/s |
|        |             |      | zdot        | Rear axle velocity along the vehicle-fixed z-axis            | Compute<br>d | m/s |

| Signal |     |        | Description            | Value        | Units |
|--------|-----|--------|------------------------|--------------|-------|
|        | Pwr | PwrExt | Applied external power | Compute<br>d | W     |
|        |     | Drag   | Power loss due to drag | Compute<br>d | W     |

#### xdot — Vehicle longitudinal velocity

scalar

Vehicle CG velocity along vehicle-fixed x-axis, in m/s.

#### FzF — Front axle normal force

scalar

Normal force on front axle,  $Fz_F$ , along vehicle-fixed z-axis, in N.

#### FzR — Rear axle normal force

scalar

Normal force on rear axle,  $Fz_R$ , along vehicle-fixed z-axis, in N.

## **Parameters**

#### Longitudinal

Number of wheels on front axle, NF — Front wheel count scalar

Number of wheels on front axle,  $N_F$ , dimensionless.

Number of wheels on rear axle, NR — Rear wheel count scalar

Number of wheels on rear axle,  $N_R$ , dimensionless.

Mass, m — Vehicle mass scalar

Vehicle mass, *m*, in kg.

# Horizontal distance from CG to front axle, a — Front axle distance scalar

Horizontal distance *a* from the vehicle CG to the front wheel axle, in m.

Horizontal distance from CG to rear axle, b — Rear axle distance scalar

Horizontal distance *b* from the vehicle CG to the rear wheel axle, in m.

```
CG height above axles, h — Height
scalar
```

Height of vehicle CG above the axles, *h*, in m.

### Drag coefficient, Cd — Drag

scalar

Air drag coefficient,  $C_d$ , dimensionless.

# Frontal area, Af — Area scalar

Effective vehicle cross-sectional area,  $A_f$  to calculate the aerodynamic drag force on the vehicle, in m<sup>2</sup>.

# Initial position, x\_o - Position scalar

Vehicle body longitudinal initial position along earth-fixed x-axis,  $x_o$ , in m.

```
Initial velocity, xdot_o - Velocity
scalar
```

Vehicle body longitudinal initial velocity along earth-fixed x-axis,  $\dot{x}_0$ , in m/s.

Vertical

Lift coefficient, Cl - Lift
scalar

Lift coefficient,  $C_l$ , dimensionless.

## Initial vertical position, $z_0 - Position$

scalar

Initial vertical CG position,  $z_o$ , along the vehicle-fixed z-axis, in m.

### Initial vertical velocity, zdot\_o - Velocity

scalar

Initial vertical CG velocity, *zdot*<sub>o</sub>, along the vehicle-fixed z-axis, in m.

#### Pitch

```
Inertia, Iyy — About body y-axis
scalar
```

Vehicle body moment of inertia about body z-axis.

# Pitch drag moment coefficient, Cpm — Drag coefficient scalar

Pitch drag moment coefficient, dimensionless.

# Initial pitch angle, theta\_o — Pitch scalar

Initial pitch angle about body z-axis, in rad.

### Initial angular velocity, q\_o — Pitch velocity

scalar

Initial vehicle body angular velocity about body z-axis, in rad/s.

#### Suspension

Front axle stiffness force data, FskF — Force
vector

Front axle stiffness force data,  $Fk_F$ , in N.

#### Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select Grade angle or Axle displacement, velocity.

# Front axle displacement data, dzsF - Displacement vector

Front axle displacement data, in m.

#### Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select Grade angle or Axle displacement, velocity.

Front axle damping force data, FsbF — Damping force
vector

Front axle damping force, in N.

#### Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select Grade angle or Axle displacement, velocity.

# Front axle velocity data, dzdotsF - Velocity vector

Front axle velocity data, in m/s.

#### Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select Grade angle or Axle displacement, velocity.

### Rear axle stiffness force data, FskR — Force

vector

Rear axle stiffness force data, in N.

#### Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select Grade angle or Axle displacement, velocity.

# Rear axle displacement data, dzsR — Displacement vector

Rear axle displacement data, in m.

#### Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select Grade angle or Axle displacement, velocity.

## Rear axle damping force data, FsbR — Damping force

vector

Rear axle damping force, in N.

#### Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select Grade angle or Axle displacement, velocity.

## Rear axle velocity data, dzdotsR — Velocity

vector

Rear axle velocity data, in m/s.

#### Dependencies

To enable this parameter, for the **Ground interaction type** parameter, select Grade angle or Axle displacement, velocity.

#### Environment

### Absolute Pressure, Pabs — Pressure

scalar

Environmental absolute pressure,  $P_{abs}$ , in Pa.

## Air Temp, T — Temperature

scalar

Environmental absolute temperature, *T*, in K.

# Gravitational acceleration, g — Gravity scalar

Gravitational acceleration, g, in m/s<sup>2</sup>.

## References

- [1] Gillespie, Thomas. *Fundamentals of Vehicle Dynamics*. Warrendale, PA: Society of Automotive Engineers, 1992.
- [2] Vehicle Dynamics Standards Committee. *Vehicle Dynamics Terminology*. SAE J670. Warrendale, PA: Society of Automotive Engineers, 2008.
- [3] Technical Committee. Road vehicles Vehicle dynamics and road-holding ability Vocabulary. ISO 8855:2011. Geneva, Switzerland: International Organization for Standardization, 2011.

## See Also

Vehicle Body 1DOF Longitudinal | Vehicle Body Total Road Load

### Introduced in R2017a

# Vehicle Body Total Road Load

Vehicle motion using coast-down testing coefficients Library: Vehicle Dynamics



# Description

The Vehicle Body Total Road Load block implements a one degree-of-freedom (1DOF) rigid vehicle model using coast-down testing coefficients. You can use this block in a vehicle model to represent the load that the driveline and chassis applies to a transmission or engine. It is suitable for system-level performance, component sizing, fuel economy, or drive cycle tracking studies. The block calculates the dynamic powertrain load with minimal parameterization or computational cost.

You can configure the block for kinematic, force, or total power input.

- Kinematic Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power.
- Force Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity.
- Power Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity.

## **Equations**

To calculate the total road load acting on the vehicle, the block implements this equation.

$$F_{road} = a + b\dot{x} + c\dot{x}^2 + mg\sin(\theta)$$

To determine the coefficients a, b, and c, you can use a test procedure similar to the one described in *Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques*. You can also use Simulink® Design Optimization<sup>™</sup> to fit the coefficients to measured data.

To calculate the vehicle motion, the block uses Newton's law for rigid bodies.

 $F_{total} = m\ddot{x} + F_{road}$ 

Total power input is a product of the total force and longitudinal velocity. Power due to road and gravitational forces is a product of the road force and longitudinal velocity.

$$\begin{split} P_{total} &= F_{total} \, \dot{x} \\ P_{road} &= F_{road} \dot{x} \end{split}$$

The equations use these variables.

| а                 | Steady-state rolling resistance coefficient                                          |
|-------------------|--------------------------------------------------------------------------------------|
| b                 | Viscous driveline and rolling resistance coefficient                                 |
| С                 | Aerodynamic drag coefficient                                                         |
| g                 | Gravitational acceleration                                                           |
| x                 | Vehicle longitudinal displacement with respect to ground, in vehicle-<br>fixed frame |
| х́                | Vehicle longitudinal velocity with respect to ground, in vehicle-fixed frame         |
| <i>x</i>          | Vehicle longitudinal acceleration with respect to ground, vehicle-fixed frame        |
| т                 | Vehicle body mass                                                                    |
| Θ                 | Road grade angle                                                                     |
| $F_{total}$       | Total force acting on vehicle                                                        |
| F <sub>road</sub> | Resistive road load due to losses and gravitational load                             |
| $P_{total}$       | Total tractive input power                                                           |
| P <sub>road</sub> | Total power due to losses and gravitational load                                     |

# Ports

## Input

xdot — Vehicle longitudinal velocity
scalar

Vehicle total longitudinal velocity,  $\dot{x}$ , in m/s.

### Dependencies

To create this port, for the Input Mode parameter, select Kinematic.

## xddot — Vehicle longitudinal acceleration

scalar

Vehicle total longitudinal acceleration,  $\ddot{x}$ , in m/s<sup>2</sup>.

#### Dependencies

To create this port, for the Input Mode parameter, select Kinematic.

## PwrTot — Tractive input power

scalar

Tractive input power,  $P_{total}$ , in W.

#### Dependencies

To create this port, for the Input Mode parameter, select Power.

# ForceTot — Tractive input force scalar

Tractive input force,  $F_{total}$ , in N.

### Dependencies

To create this port, for the Input Mode parameter, select Force.

# Grade — Road grade angle scalar

Road grade angle,  $\Theta$ , in deg.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal           |    |      |           | Description                                                         | Value    | Units |
|------------------|----|------|-----------|---------------------------------------------------------------------|----------|-------|
| I<br>n           | Cg | Disp | X         | Vehicle CG displacement along<br>earth-fixed X-axis                 | Computed | m     |
| e<br>r<br>t      |    |      | Y         | Vehicle CG displacement along<br>earth-fixed Y-axis                 | 0        | m     |
| F                |    |      | Z         | Vehicle CG displacement along<br>earth-fixed Z-axis                 | Computed | m     |
| m                |    | Vel  | Xdot      | Vehicle CG velocity along earth-<br>fixed X-axis                    | Computed | m/s   |
|                  |    |      | Ydot      | Vehicle CG velocity along earth-<br>fixed Y-axis                    | 0        | m/s   |
|                  |    |      | Zdot      | Vehicle CG velocity along earth-<br>fixed Z-axis                    | Computed | m/s   |
|                  |    | Ang  | phi       | Rotation of vehicle-fixed frame<br>about earth-fixed X-axis (roll)  | 0        | rad   |
|                  |    |      | thet<br>a | Rotation of vehicle-fixed frame<br>about earth-fixed Y-axis (pitch) | Computed | rad   |
|                  |    |      | psi       | Rotation of vehicle-fixed frame<br>about earth-fixed Z-axis (yaw)   | 0        | rad   |
| B<br>d           | Cg | Disp | х         | Vehicle CG displacement along<br>vehicle-fixed x-axis               | Computed | m     |
| У<br>F<br>r<br>m |    |      | У         | Vehicle CG displacement along vehicle-fixed y-axis                  | 0        | m     |
|                  |    |      | Z         | Vehicle CG displacement along<br>vehicle-fixed z-axis               | 0        | m     |

| Signal |            |           |      | Description                                                | Value    | Units |
|--------|------------|-----------|------|------------------------------------------------------------|----------|-------|
|        |            | Vel       | xdot | Vehicle CG velocity along vehicle-<br>fixed x-axis         | Computed | m/s   |
|        |            |           | ydot | Vehicle CG velocity along vehicle-<br>fixed y-axis         | 0        | m/s   |
|        |            |           | zdot | Vehicle CG velocity along vehicle-<br>fixed z-axis         | 0        | m/s   |
|        |            | Acce<br>l | ax   | Vehicle CG acceleration along vehicle-fixed x-axis         | Computed | gn    |
|        |            |           | ау   | Vehicle CG acceleration along vehicle-fixed y-axis         | 0        | gn    |
|        |            |           | az   | Vehicle CG acceleration along vehicle-fixed z-axis         | 0        | gn    |
|        | For<br>ces | Body      | Fx   | Net force on vehicle CG along<br>vehicle-fixed x-axis      | Computed | N     |
|        |            |           | Fy   | Net force on vehicle CG along<br>vehicle-fixed y-axis      | 0        | N     |
|        |            |           | Fz   | Net force on vehicle CG along<br>vehicle-fixed z-axis      | 0        | N     |
|        |            | Ext       | Fx   | External force on vehicle CG<br>along vehicle-fixed x-axis | Computed | N     |
|        |            |           | Fy   | External force on vehicle CG<br>along vehicle-fixed y-axis | 0        | N     |
|        |            |           | Fz   | External force on vehicle CG<br>along vehicle-fixed z-axis | 0        | N     |
|        |            | Drag      | Fx   | Drag force on vehicle CG along<br>vehicle-fixed x-axis     | Computed | N     |
|        |            |           | Fy   | Drag force on vehicle CG along<br>vehicle-fixed y-axis     | 0        | N     |
|        |            |           | Fz   | Drag force on vehicle CG along<br>vehicle-fixed z-axis     | 0        | N     |
|        |            | Grvt<br>y | Fx   | Gravity force on vehicle CG along vehicle-fixed x-axis     | Computed | N     |

| Signal |     |        |    | Description                                            | Value    | Units |
|--------|-----|--------|----|--------------------------------------------------------|----------|-------|
|        | Fy  |        |    | Gravity force on vehicle CG along vehicle-fixed y-axis | 0        | N     |
|        |     |        | Fz | Gravity force on vehicle CG along vehicle-fixed z-axis | Computed | Ν     |
|        | Pwr | PwrExt |    | Applied external power                                 | Computed | W     |
|        |     | Drag   |    | Power loss due to drag                                 | Computed | W     |

#### xdot — Vehicle longitudinal velocity

scalar

Vehicle total longitudinal velocity,  $\dot{x}$ , in m/s.

#### Dependencies

To create this port, for the Input Mode parameter, select Power or Force.

### ForceTot — Tractive input force

scalar

Tractive input force,  $F_{total}$ , in N.

#### Dependencies

To create this port, for the Input Mode parameter, select Kinematic.

## **Parameters**

#### Input Mode — Specify input mode

Kinematic (default) | Force | Power

Specify the input type.

- Kinematic Block uses the vehicle longitudinal velocity and acceleration to calculate the tractive force and power. Use this configuration for powertrain, driveline, and braking system design, or component sizing.
- Force Block uses the tractive force to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.
Power — Block uses the engine or transmission power to calculate the vehicle longitudinal displacement and velocity. Use this configuration for system-level performance, fuel economy, or drive cycle tracking studies.

#### Dependencies

This table summarizes the port and input mode configurations.

| Input Mode | Creates Ports |
|------------|---------------|
| Kinematic  | xdot          |
|            | xddot         |
| Force      | Force         |
| Power      | Power         |

#### Mass — Vehicle body mass

scalar

Vehicle body mass, *m*, in kg.

#### Rolling resistance coefficient, a — Rolling

scalar

Steady-state rolling resistance coefficient, *a*, in N.

#### Rolling and driveline resistance coefficient, b — Rolling and driveline scalar

Viscous driveline and rolling resistance coefficient, b, in N\*s/m.

### Aerodynamic drag coefficient, c — Drag

scalar

Aerodynamic drag coefficient, c, in N\*s<sup>2</sup>/m.

#### Gravitational acceleration, g — Gravity scalar

Gravitational acceleration, q, in m/s<sup>2</sup>.

Initial velocity, xdot o — Velocity scalar

Vehicle longitudinal initial velocity with respect to ground, in m/s.

### References

- [1] Gillespie, Thomas. *Fundamentals of Vehicle Dynamics*. Warrendale, PA: Society of Automotive Engineers (SAE), 1992.
- [2] Light Duty Vehicle Performance And Economy Measure Committee. Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques. Standard J1263\_201003. SAE International, March 2010.

## See Also

Drive Cycle Source | Vehicle Body 1DOF Longitudinal | Vehicle Body 3DOF Longitudinal

#### Introduced in R2017a

# Energy Storage Blocks — Alphabetical List

# **Datasheet Battery**

Lithium-ion, lithium-polymer, or lead-acid battery

Library: Energy Storage and Auxiliary Drive / Datasheet Battery



## Description

The Datasheet Battery block implements a lithium-ion, lithium-polymer, or lead-acid battery that you can parameterize using manufacturer data. To create the open-circuit voltage and internal resistance parameters that you need for the block, use the manufacturer discharge characteristics by temperature data. For an example, see "Generate Parameter Data for Datasheet Battery Block".

To determine the battery output voltage, the block uses lookup tables for the battery open-circuit voltage and the internal resistance. The lookup tables are functions of the state-of charge (SOC) and battery temperature, characterizing the battery performance at various operating points:

$$E_m = f(SOC)$$
$$R_{int} = f(T,SOC)$$

To calculate the voltage, the block implements these equations.

$$\begin{split} V_T &= E_m - I_{batt} R_{int} \\ I_{batt} &= \frac{I_{in}}{N_p} \\ V_{out} &= N_s V_T \\ SOC &= \frac{-1}{Cap_{batt}} \int_0^t I_{batt} dt \end{split}$$

Positive current indicates battery discharge. Negative current indicates battery charge.

The equations use these variables.

| SOC               | State-of-charge                                   |
|-------------------|---------------------------------------------------|
| $E_m$             | Battery open-circuit voltage                      |
| I <sub>batt</sub> | Per module battery current                        |
| I <sub>in</sub>   | Combined current flowing from the battery network |
| R <sub>int</sub>  | Battery internal resistance                       |
| $N_s$             | Number of cells in series                         |
| $N_p$             | Number of cells in parallel                       |
| Vout              | Combined voltage of the battery network           |
| $V_T$             | Per module battery voltage                        |
| $Cap_{batt}$      | Battery capacity                                  |

## Ports

### Inputs

#### CapInit — Battery capacity

scalar

Rated battery capacity at the nominal temperature, *Cap<sub>batt</sub>*, in Ah.

#### Dependencies

To create this port, select External Input for the Initial battery capacity parameter.

### BattCurr — Battery load current

scalar

Combined current flowing from the battery network,  $I_{in}$ , in A.

# BattTemp — Battery temperature scalar

Temperature measured at the battery housing, *T*, in K.

### Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    | Description                                         | Units |
|-----------|-----------------------------------------------------|-------|
| BattCurr  | Combined current flowing from the battery network   | А     |
| BattAmpHr | Normalized current flowing from the battery network | A*h   |
| BattSoc   | State-of-charge capacity                            | NA    |
| BattVolt  | Combined voltage of the battery network             | V     |
| BattPwr   | Battery power                                       | W     |

#### BattVolt — Battery output voltage

scalar

Combined voltage of the battery network,  $V_{out}$ , in V.

## **Parameters**

#### **Block Options**

#### **Initial battery capacity — Input or parameter** Parameter (default) | External Input

Initial battery capacity, *Cap<sub>batt</sub>*, in Ah.

#### Dependencies

| Block Parameter Initial battery<br>capacity Option | Creates            |
|----------------------------------------------------|--------------------|
| External Input                                     | Input port CapInit |

| Block Parameter Initial battery<br>capacity Option | Creates                                                          |
|----------------------------------------------------|------------------------------------------------------------------|
| Parameter                                          | Parameter <b>Initial battery capacity,</b><br><b>BattCapInit</b> |

#### Output battery voltage — Unfiltered or Filter

Unfiltered (default) | Filtered

Select Filtered to apply a first-order filter to the output batter voltage.

#### Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

Rated capacity at nominal temperature, BattChargeMax — Constant
scalar

Rated battery capacity at the nominal temperature, in Ah.

# **Open circuit voltage table data, Em — 1-D lookup table** 1-by-P matrix

Open-circuit voltage data curve,  $E_m$ , as a function of the discharged capacity for P operating points, in V.

#### **Open circuit voltage breakpoints 1, CapLUTBp — Breakpoints** 1-by-P matrix

Discharge capacity breakpoints for P operating points, dimensionless.

Although this parameter is the same as the **Battery capacity breakpoints 2**, **CapSOCBp** parameter, the block uses unique parameters for calibration flexibility.

# **Internal resistance table data, RInt — 2-D lookup table** N-by-M matrix

Internal resistance map,  $R_{int}$ , as a function of N temperatures and M SOCs, in ohms.

# **Battery temperature breakpoints 1, BattTempBp — Breakpoints** 1-by-N matrix

Battery temperature breakpoints for  ${\sf N}$  temperatures, in K.

### Battery capacity breakpoints 2, CapSOCBp — Breakpoints

1-by-M matrix

Battery capacity breakpoints for M SOCs, dimensionless.

Although this parameter is the same as the **Open circuit voltage breakpoints 1**, **CapLUTBp** parameter, the block uses unique parameters for calibration flexibility.

```
Number of cells in series, Ns — Integer scalar
```

Number of cells in series, dimensionless,  $N_s$ .

# Number of cells in parallel, Np — Integer scalar

Number of cells in parallel, dimensionless,  $N_p$ .

# Initial battery capacity, BattCapInit - Capacity scalar

Initial battery capacity, *Cap<sub>batt</sub>*, in Ah.

#### Dependencies

| Block Parameter Initial battery<br>capacity Option | Creates                                            |
|----------------------------------------------------|----------------------------------------------------|
| External Input                                     | Input port CapInit                                 |
| Parameter                                          | Parameter Initial battery capacity,<br>BattCapInit |

**Output battery voltage time constant, Tc — Filter time constant** scalar

Output battery voltage time constant,  $T_{c}$ , in s. Used in a first-order voltage filter.

#### Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

# **Output battery voltage initial value — Filter initial voltage** scalar

Output battery voltage initial value, V<sub>init</sub>, in V. Used in a first-order voltage filter.

#### Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

### References

- [1] Arrhenius, S.A. "Über die Dissociationswärme und den Einflusß der Temperatur auf den Dissociationsgrad der Elektrolyte." *Journal of Physical Chemistry*. 4 (1889): 96–116.
- [2] Connors, K. Chemical Kinetics. New York: VCH Publishers, 1990.
- [3] Ji, Yan, Yancheng Zhang, and Chao-Yang Wang. *Journal of the Electrochemical Society*. Volume 160, Issue 4 (2013), A636-A649.

## See Also

Equivalent Circuit Battery | Estimation Equivalent Circuit Battery

### **Topics**

"Generate Parameter Data for Datasheet Battery Block" Battery Modeling

#### Introduced in R2017a

# **Estimation Equivalent Circuit Battery**

Resistor-capacitor (RC) circuit battery that creates lookup tables Library: Energy Storage and Auxiliary Drive / Network Battery



## Description

The Estimation Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery model that you can use to create lookup tables for the Equivalent Circuit Battery block. The lookup tables are functions of the state-of-charge (SOC).

The Estimation Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC. To acquire the SOC, the block integrates the charge and discharge currents.

Specifically, the block implements these parameters as lookup tables that are functions of the SOC:

- Series resistance,  $R_o = f(SOC)$
- Battery open-circuit voltage, *E<sub>m</sub>*=f(*SOC*)
- Network resistance, *R<sub>n</sub>*=f(*SOC*)
- Network capacitance, *C<sub>n</sub>*=f(*SOC*)

To calculate the combined voltage of the battery network, the block uses these equations.

$$V_{T} = E_{m} - I_{batt}R_{o} - \sum_{1}^{n}V_{n}$$
$$V_{n} = \int_{0}^{t} \left[\frac{I_{batt}}{C_{n}} - \frac{V_{n}}{R_{n}C_{n}}\right]dt$$
$$SOC = \frac{-1}{C_{batt}}\int_{0}^{t}I_{batt}dt$$
$$I_{batt} = I_{in}$$
$$V_{out} = V_{T}$$

Positive current indicates battery discharge. Negative current indicates battery charge.

The equations use these variables.

| SOC               | State-of-charge                                   |
|-------------------|---------------------------------------------------|
| $E_m$             | Battery open-circuit voltage                      |
| I <sub>batt</sub> | Per module battery current                        |
| I <sub>in</sub>   | Combined current flowing from the battery network |
| $R_o$             | Series resistance                                 |
| n                 | Number of RC pairs in series                      |
| $V_{out}$ , $V_T$ | Combined voltage of the battery network           |
| V <sub>n</sub>    | Voltage for <i>n</i> -th RC pair                  |
| $R_n$             | Resistance for <i>n</i> -th RC pair               |
| $C_n$             | Capacitance for <i>n</i> -th RC pair              |
| $C_{batt}$        | Battery capacity                                  |

## Ports

## Inputs

BattCurr — Battery network current scalar

Combined current flowing from the battery network,  $I_{in}$ , in A.

### Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal  | Description                      | Variable       | Units |
|---------|----------------------------------|----------------|-------|
| CapVolt | Voltage for <i>n</i> -th RC pair | V <sub>n</sub> | V     |

#### BattVolt — Battery output voltage

scalar

Combined voltage of the battery network,  $V_{out}$ , in V.

#### BattSoc — Battery SOC

scalar

Battery state-of-charge, SOC.

## **Parameters**

#### **Core Battery**

Number of series RC pairs — RC pairs 1 (default) | 2 | 3 | 4 | 5

Number of series RC pairs. For lithium, typically 1 or 2.

**Open circuit voltage Em table data, Em — Voltage table** array

Open-circuit voltage table,  $E_m$ , in V. Function of SOC.

Series resistance table data, R0 — Resistance array

Series resistance table,  $R_o$ , in ohms. Function of SOC.

# State of charge breakpoints, SOC\_BP — SOC breakpoints vector

State-of-charge (SOC) breakpoints, dimensionless.

#### Battery capacity, BattCap — Capacity

scalar

Battery capacity,  $C_{batt}$ , in Ah.

```
Initial battery capacity, BattCapInit — Capacity
scalar
```

Initial battery capacity,  $C_{batto}$ , in Ah.

# Initial capacitor voltage, InitialCapVoltage — Voltage vector

Initial capacitor voltage, in V. Dimension of vector must equal the **Number of series RC pairs**.

#### R and C Table Data

# **Network resistance table data,** *Rn* **– Lookup table** array

Network resistance table data for *n*-th RC pair, as a function of SOC, in ohms.

#### Network capacitance table data, Cn — Lookup table

array

Network capacitance table data for *n*-th RC pair, as a function of SOC, in F.

#### Cell Limits

**Upper Integrator Voltage Limit, Vu — Maximum** scalar

SCALAI

Upper voltage limit, in V.

Lower Integrator Voltage Limit, Vl — Minimum
scalar

Lower voltage limit, in V.

### References

- [1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." SAE International Journal of Alternative Powertrains. doi: 10.4271/2015-01-0252, 4(2):2015.
- [2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." SAE International Journal of Aerospace. doi:10.4271/2014-01-2217, 7(2):2014.
- [3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." *IEEE® International Electric Vehicle Conference*. March 2012, pp. 1–8.
- [4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." *SAE Technical Paper 2013-01-1544*. doi:10.4271/2013-01-1544, 2013.
- [5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi: 10.4271/2007-01-0778, 2007.
- [6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi: 10.4271/2009-01-1381, 2009.
- [7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

## See Also

Datasheet Battery | Equivalent Circuit Battery

### Topics

"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling Introduced in R2017a

# **Equivalent Circuit Battery**

Resistor-capacitor (RC) circuit battery

Library: Energy Storage and Auxiliary Drive / Network Battery



# Description

The Equivalent Circuit Battery block implements a resistor-capacitor (RC) circuit battery that you can parameterize using equivalent circuit modeling (ECM). To simulate the stateof-charge (SOC) and terminal voltage, the block uses load current and internal core temperature.

The Equivalent Circuit Battery block calculates the combined voltage of the network battery using parameter lookup tables. The tables are functions of the SOC and battery temperature. You can use the Estimation Equivalent Circuit Battery block to help create the lookup tables.

Specifically, the Equivalent Circuit Battery block implements these parameters as lookup tables that are functions of the SOC and battery temperature:

- Series resistance, *R*<sub>o</sub>=f(SOC,T)
- Battery open-circuit voltage, *E<sub>m</sub>*=f(*SOC*,*T*)
- Battery capacity,  $C_{batt}=f(T)$
- Network resistance, *R<sub>n</sub>*=f(*SOC*,*T*)
- Network capacitance,  $C_n = f(SOC, T)$

To calculate the combined voltage of the battery network, the block uses these equations.

$$\begin{split} V_T &= E_m - I_{batt} R_o - \sum_1^n V_n \\ V_n &= \int_0^t \biggl[ \frac{I_{batt}}{C_n} - \frac{V_n}{R_n C_n} \biggr] dt \\ SOC &= \frac{-1}{C_{batt}} \int_0^t I_{batt} dt \\ I_{batt} &= \frac{I_{in}}{N_p} \\ V_{out} &= N_s V_T \end{split}$$

Positive current indicates battery discharge. Negative current indicates battery charge.

To calculate the battery power, the block uses this equation.

$$P_{batt} = {I_{batt}}^2 R_0 + \sum_1^n \frac{{V_n}^2}{R_n}$$

The equations use these variables.

| SOC               | State-of-charge                                                 |
|-------------------|-----------------------------------------------------------------|
| $E_m$             | Battery open-circuit voltage                                    |
| I <sub>batt</sub> | Per module battery current                                      |
| I <sub>in</sub>   | $Combined \ current \ flowing \ from \ the \ battery \ network$ |
| $R_o$             | Series resistance                                               |
| $N_p$             | Number parallel branches                                        |
| $N_p$             | Number of RC pairs in series                                    |
| $V_{out}$ , $V_T$ | Combined voltage of the battery network                         |
| $V_n$             | Voltage for <i>n</i> -th RC pair                                |
| $R_n$             | Resistance for <i>n</i> -th RC pair                             |
| $C_n$             | Capacitance for <i>n</i> -th RC pair                            |
| C <sub>batt</sub> | Battery capacity                                                |
|                   |                                                                 |

P\_battResistive battery power lossTBattery temperature

## Ports

### Inputs

CapInit — Battery capacity scalar

Rated battery capacity at the nominal temperature, *Cap<sub>batt</sub>*, in Ah.

#### Dependencies

To create this port, select External Input for the Initial battery capacity parameter.

BattCurr — Battery network current scalar

Combined current flowing from the battery network,  $I_{in}$ , in A.

#### BattTemp — Battery temperature

scalar

Battery temperature, *T*, in K.

### Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal   | Description                                       | Units |
|----------|---------------------------------------------------|-------|
| BattCurr | Combined current flowing from the battery network | А     |
| BattSoc  | State-of-charge capacity                          | NA    |

| Signal      | Description                             | Units |
|-------------|-----------------------------------------|-------|
| BattVolt    | Combined voltage of the battery network | V     |
| BattPwr     | Battery power                           | W     |
| BattPwrLoss | Battery power loss                      | W     |

### BattVolt — Battery output voltage

scalar

Combined voltage of the battery network,  $V_{out}$ , in V.

## **Parameters**

#### **Block Options**

### Initial battery capacity - Input or parameter

Parameter (default) | External Input

Initial battery capacity, *Cap*<sub>batt</sub>, in Ah.

#### Dependencies

| Block Parameter Initial battery<br>capacity Option | Creates                                                          |
|----------------------------------------------------|------------------------------------------------------------------|
| External Input                                     | Input port CapInit                                               |
| Parameter                                          | Parameter <b>Initial battery capacity,</b><br><b>BattCapInit</b> |

#### Output battery voltage — Unfiltered or Filter

Unfiltered (default) | Filtered

Select Filtered to apply a first-order filter to the output batter voltage.

#### Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

• Output battery voltage time constant, Tc

• Output battery voltage initial value, Vinit

#### **Core Battery**

```
Number of series RC pairs — RC pairs 1 (default) | 2 | 3 | 4 | 5
```

Number of series RC pairs. For lithium, typically 1 or 2.

```
Open circuit voltage Em table data, Em — Voltage table array
```

Open circuit voltage table,  $E_m$ , in V. Function of SOC and battery temperature.

```
Series resistance table data, R0 — Resistance array
```

Series resistance table,  $R_o$ , in ohms. Function of SOC and battery temperature.

```
State of charge breakpoints, SOC_BP — SOC breakpoints
vector
```

State-of-charge (SOC) breakpoints, dimensionless.

```
Temperature breakpoints, Temperature_BP — Battery
vector
```

Battery temperature breakpoints, K.

### Battery capacity table, BattCap — Capacity

array

Battery capacity, *C*<sub>batt</sub>, in Ah. Function of battery temperature.

Initial capacitor voltage, InitialCapVoltage — Voltage
vector

Initial capacitor voltage, in V. Dimension of vector must equal the **Number of series RC pairs**.

Initial battery capacity, BattCapInit — Capacity
scalar

Initial battery capacity, *Cap*<sub>batt</sub>, in Ah.

#### Dependencies

| Block Parameter Initial battery<br>capacity Option | Creates                                            |
|----------------------------------------------------|----------------------------------------------------|
| External Input                                     | Input port CapInit                                 |
| Parameter                                          | Parameter Initial battery capacity,<br>BattCapInit |

# Output battery voltage time constant, $\ensuremath{\text{Tc}}$ – Filter time constant scalar

Output battery voltage time constant,  $T_{c}$ , in s. Used in a first-order voltage filter.

#### Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

# **Output battery voltage initial value, Vinit — Filter initial voltage** scalar

Output battery voltage initial value,  $V_{init}$ , in V. Used in a first-order voltage filter.

#### Dependencies

Setting **Output battery voltage** parameter to Filtered creates these parameters:

- Output battery voltage time constant, Tc
- Output battery voltage initial value, Vinit

#### R and C Table Data

# **Network resistance table data,** *Rn* **– Lookup table** array

Network resistance table data for n-th RC pair, in ohms, as a function of SOC and battery temperature.

# **Network capacitance table data, Cn — Lookup table** array

Network capacitance table data for n-th RC pair, in F, as a function of SOC and battery temperature.

#### **Cell Limits**

**Upper integrator voltage limit**, **Vu — Maximum** scalar

Upper voltage limit, in V.

Lower integrator voltage limit, Vl — Minimum
scalar

Lower voltage limit, in V.

### References

- [1] Ahmed, R., J. Gazzarri, R. Jackey, S. Onori, S. Habibi, et al. "Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications." SAE International Journal of Alternative Powertrains. doi: 10.4271/2015-01-0252, 4(2):2015.
- [2] Gazzarri, J., N. Shrivastava, R. Jackey, and C. Borghesani. "Battery Pack Modeling, Simulation, and Deployment on a Multicore Real Time Target." SAE International Journal of Aerospace. doi:10.4271/2014-01-2217, 7(2):2014.
- [3] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells." *IEEE International Electric Vehicle Conference*. March 2012, pp. 1– 8.
- [4] Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. "Simplified Extended Kalman Filter Observer for SOC Estimation of Commercial Power-Oriented LFP Lithium Battery Cells." SAE Technical Paper 2013-01-1544. doi:10.4271/2013-01-1544, 2013.
- [5] Jackey, R. "A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection." SAE Technical Paper 2007-01-0778. doi: 10.4271/2007-01-0778, 2007.
- [6] Jackey, R., G. Plett, and M. Klein. "Parameterization of a Battery Simulation Model Using Numerical Optimization Methods." SAE Technical Paper 2009-01-1381. doi: 10.4271/2009-01-1381, 2009.

[7] Jackey, R., M. Saginaw, T. Huria, M. Ceraolo, P. Sanghvi, and J. Gazzarri. "Battery Model Parameter Estimation Using a Layered Technique: An Example Using a Lithium Iron Phosphate Cell." SAE Technical Paper 2013-01-1547. Warrendale, PA: SAE International, 2013.

## See Also

Datasheet Battery | Estimation Equivalent Circuit Battery

### **Topics**

"Generate Parameter Data for Equivalent Circuit Battery Block" Battery Modeling

#### Introduced in R2017a

# **Reduced Lundell Alternator**

Reduced Lundell (claw-pole) alternator with an external voltage regulator Library: Energy Storage and Auxiliary Drive / Alternator



## Description

The Reduced Lundell Alternator block implements a reduced Lundell (claw-pole) alternator with an external voltage regulator. The back-electromotive force (EMF) voltage is proportional to the input velocity and field current. The motor operates as a source torque to the internal combustion engine.

Use the Reduced Lundell Alternator block:

- To model an automotive electrical system
- In an engine model with a front-end accessory drive (FEAD)

The calculated motor shaft torque is in the opposite direction of the engine speed. You can:

- Tune the external voltage regulator to a desired bandwidth. The stator current and two diode drops reduce the stator voltage.
- Filter the load current to desired bandwidth. The load current has a lower saturation of 0 A.

### **Equations**

The Reduced Lundell Alternator block implements equations for the electrical, control, and mechanical systems that use these variables.

- $v_{ref}$  Alternator output voltage command
- v<sub>f</sub> Field winding voltage

| <i>i</i> <sub>f</sub>    | Field winding current                        |
|--------------------------|----------------------------------------------|
| i <sub>s</sub>           | Stator winding current                       |
| $V_d$                    | Diode voltage drop                           |
| $R_f$                    | Field winding resistance                     |
| $R_s$                    | Stator winding resistance                    |
| $L_f$                    | Field winding inductance                     |
| $K_{ u}$                 | Voltage constant                             |
| $F_{v}$                  | Voltage regulator bandwidth                  |
| $F_c$                    | Input current filter bandwidth               |
| V <sub>fmax</sub>        | Field control voltage upper saturation limit |
| $V_{fmin}$               | Field control voltage lower saturation limit |
| $K_c$                    | Coulomb friction coefficient                 |
| $K_b$                    | Viscous friction coefficient                 |
| $K_w$                    | Windage coefficient                          |
| ω                        | Motor shaft angular speed                    |
| <i>i</i> <sub>load</sub> | Alternator load current                      |
| $v_s$                    | Alternator output voltage                    |
| $	au_{mech}$             | Motor shaft torque                           |

To calculate voltages, the block uses these equations.

| Calculation               | Equations                               |
|---------------------------|-----------------------------------------|
| Alternator output voltage | $v_s = K_v i_f \omega - R_s i_s - 2V_d$ |
| Field winding voltage     |                                         |
|                           | $v_f = R_f i_f + L_f \frac{di_f}{dt}$   |

The controller assumes no resistance or voltage drop.

| Calculation                                      | Equations                                                                           |
|--------------------------------------------------|-------------------------------------------------------------------------------------|
| Field winding voltage<br>transform               | $V_{f}(s) = R_{f}I_{f}(s) + sL_{f}I_{f}(s)$                                         |
| Field winding current<br>transform               | $I_f(s) = \frac{V_f(s)}{(R_{s+s}I_{s})}$                                            |
| Open loop electrical transfer<br>function        | $G(s) = \frac{V_s(s)}{V_{s'}(s)} = \frac{K_v \omega}{(R_v + \sigma L_v)}$           |
| Open loop voltage regulator<br>transfer function | $G_C(s) = \frac{V_f(s)}{V_{rat}(s)}$                                                |
| Closed loop transfer function                    | G(s)Gc(s)                                                                           |
| Closed loop controller design                    | $\frac{T(s) = \frac{(1 + G(s)Gc(s))}{1 + G(s)Gc(s)}}{\frac{1}{1 + G(s)Gc(s)}}$      |
|                                                  | $T(s) = \frac{1}{\tau s + 1} \rightarrow G(s)Gc(s) = \frac{1}{\tau s}$              |
|                                                  | $G_C(s) = K_g (K_p + \frac{K_i}{s})$                                                |
|                                                  | $G(s)G_{C}(s) = \frac{K_{v}\omega}{(R_{f} + sL_{f})}K_{g}(K_{p} + \frac{K_{i}}{s})$ |
|                                                  | $K_p = L_f$ , $K_i = R_f$ , and $K_g = \frac{2\pi f}{K_v \omega}$                   |

To calculate torques, the block uses these equations.

| Calculation       | Equations                                 |
|-------------------|-------------------------------------------|
| Electrical torque |                                           |
|                   | $\tau_{elec} = (K_v i_f \omega) i_{load}$ |

| Calculation        | Equations                                                                     |
|--------------------|-------------------------------------------------------------------------------|
| Frictional torque  | $\tau_{a}$ , $-K_{c}$                                                         |
|                    | i friction - M <sub>b</sub> w                                                 |
| Windage torque     |                                                                               |
|                    | $	au_{windage} = K_w \omega^2$                                                |
| Torque at start    |                                                                               |
| 1                  | $\tau_{start} = K_c$ when $\omega = 0$                                        |
| Motor shaft torque |                                                                               |
| -                  | $\tau_{mech} = \tau_{elec} + \tau_{friction} + \tau_{windage} + \tau_{start}$ |

## Ports

### Inputs

# **RefVolt — Alternator output voltage command** scalar

Alternator output voltage command, in V.

#### AltSpd — Angular speed

scalar

Motor shaft input angular speed, in rad/s.

### LdCurr — Alternator load current

scalar

Alternator load current, in A.

## Output

# Info — Bus signal bus

Bus signal containing these block calculations.

| Signal  | Description           | Units |
|---------|-----------------------|-------|
| FldVolt | Field winding voltage | А     |
| FldFlux | Field flux            | Wb    |

#### AltVolt — Alternator output voltage

scalar

Alternator output voltage, in V.

LdTrq — Motor shaft torque scalar

Motor shaft torque, in N.m.

## **Parameters**

#### **Machine Configuration**

# **Voltage constant, Kv — Constant** scalar

Voltage constant, in V/rad/s.

# Field winding resistance, Rf — Resistance scalar

Field winding resistance, in ohm.

# Field winding inductance, Lf — Inductance scalar

Field winding inductance, in H.

# Stator winding resistance, Rs — Resistance scalar

Stator winding resistance, in ohm.

Diode voltage drop, Vd — Voltage
scalar

Diode voltage drop, in V.

#### Voltage Regulator

**Regulator bandwidth, Fv — Bandwidth** scalar

The regulator bandwidth, in Hz.

Current filter bandwidth, Fc — Bandwidth
scalar

The current filter bandwidth, in Hz.

Field voltage max, Vfmax — Maximum field voltage
scalar

The maximum field voltage, in V.

Field voltage min, Vfmin — Minimum field voltage scalar

The minimum field voltage, in V.

#### **Mechanical Losses**

**Coulomb friction, Kc — Friction** scalar

Coulomb friction, in N.m.

**Viscous friction, Kb — Friction** scalar

Viscous friction, in N.m/rad/s.

Windage, Kw — Windage scalar

Windage, in N.m/rad<sup>2</sup>/s<sup>2</sup>.

### References

[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

# See Also

Starter

Introduced in R2017a

# Starter

Starter as a DC motor Library: Energy Storage and Auxiliary Drive / Starter



# Description

The Starter block implements a starter assembly as a separately excited DC motor, permanent magnet DC motor, or series connection DC motor. The motor operates as a torque source to an internal combustion engine.

Use the Starter block:

- In an engine model with a front-end accessory drive (FEAD)
- To model engine start and stop scenarios

The Starter block supports only an angular speed input to the DC motor. A load torque input requires engine dynamics.

## Equations

The block implements equations that use these variables.

- $R_a$  Armature winding resistance
- *L<sub>a</sub>* Armature winding inductance
- EMF Counter-electromotive force
- $R_f$  Field winding resistance
- $L_f$  Field winding inductance
- $L_{af}$  Field and armature mutual inductance
- $i_a$  Armature winding current
- *i*<sub>f</sub> Field winding current

- $K_t$  Motor torque constant
- $\omega$  Motor shaft angular speed
- $V_a$  Armature winding voltage
- $V_f$  Field winding voltage
- $V_{af}$  Field and armature winding voltage
- $i_{af}$  Field and armature series current
- $R_{ser}$  Series connected field and armature resistance
- *L<sub>ser</sub>* Series connected field and armature inductance
- *i*<sub>load</sub> Starter motor current load
- *T<sub>mech</sub>* Starter motor shaft torque

In a separately excited DC motor, the field winding is connected to a separate source of DC power.

The relationship between the field winding voltage, field resistance, and field inductance is given by:

$$V_f = L_f \frac{di_f}{dt} + R_f i_f$$

The counter-electromotive force is a product of the field resistance, mutual inductance, and motor shaft angular speed:

$$EMF = L_a i_f L_{af} \omega$$

The armature voltage is given by:

$$V_a = L_a \frac{di_a}{dt} + R_a i_a + EMF$$

The starter motor current load is the sum of the field winding current and armature winding current:

$$i_{load} = i_f + i_a$$

The starter motor shaft torque is the product of the armature current, field current, and mutual inductance:

$$T_{mech} = i_a i_f L_{af}$$

In a permanent magnet DC motor, the magnets establish the excitation flux, so there is no field current.

The counter-electromotive force is proportional to the motor shaft angular speed:

$$EMF = K_t \omega$$

The armature voltage is given by:

$$V_a = L_a \frac{di_a}{dt} + R_a i_a + EMF$$

The starter motor current load is equal to the armature winding current:

$$i_{load} = i_a$$

The starter motor shaft torque is proportional to the armature winding current:

$$T_{mech} = K_t i_a$$

A series excited DC motor connects the armature and field windings in series with a common DC power source.

The counter-electromotive force is a product of the field and armature initial series current, field, and armature mutual inductance and motor shaft angular speed:

$$EMF = i_{af}L_{af}\omega$$

The field and armature winding voltage is given by:

$$V_{af} = L_{ser} \frac{di_{af}}{dt} + R_{ser} i_{af} + EMF$$

The starter motor current load is equal to the field and armature series current:

 $i_{load} = i_{af}$ 

The starter motor shaft torque is the product of the squared field and armature series current and the field and armature mutual inductance:

$$T_{mech} = i_{af}^2 L_{af}$$

For motor stability, the motor shaft angular speed must be greater than the ratio of the series connected field and armature resistance to the mutual inductance:

$$\omega > -\frac{R_{ser}}{L_{af}}$$

## **Ports**

### Inputs

MtrSpd — Angular speed

scalar

Motor shaft angular speed, in rad/s.

### StartVolt — Armature and field voltage

scalar

- Armature winding voltage  $V_a$  and field winding voltage  $V_f$ , in V.
- In series excited DC motor, armature and field winding voltage  $V_{af}$ .

## Output

Info — Bus signal bus

Bus signal containing these block calculations.

| Signal  | Description              | Units |
|---------|--------------------------|-------|
| ArmCurr | Armature winding current | А     |
| FldCurr | Field winding current    | А     |

#### LdCurr — Starter motor load current

scalar

Starter motor load current, in A.

MtrTrq — Starter motor shaft torque scalar

Starter motor shaft torque, in N.m.

## **Parameters**

#### Configuration

#### Motor Type — Select motor type

```
Separately Excited DC Motor (default) | Permanent Magnet Excited DC Motor | Series Connection DC Motor
```

Select one of the three motor types.

#### Dependencies

The table summarizes the motor parameter dependencies.

| Motor Type                           | Enables Motor Parameter                 |
|--------------------------------------|-----------------------------------------|
| Separately Excited DC Motor          | Armature winding resistance, Ra         |
|                                      | Armature winding inductance, La         |
|                                      | Field winding resistance Rf             |
|                                      | Field winding inductance, Lf            |
|                                      | Mutual inductance, Laf                  |
|                                      | Initial armature and field current, Iaf |
| Permanent Magnet Excited DC<br>Motor | Armature winding resistance, Rapm       |

| Motor Type                 | Enables Motor Parameter           |
|----------------------------|-----------------------------------|
|                            | Armature winding inductance, Lapm |
|                            | Torque constant, Kt               |
|                            | Initial armature current, Ia      |
| Series Connection DC Motor | Total resistance, Rser            |
|                            | Total inductance, Lser            |
|                            | Initial current, Iafser           |
|                            | Mutual inductance, Lafser         |

#### Separately Excited DC Motor

### Armature winding resistance, Ra — Resistance

scalar

Armature winding resistance, in ohm.

#### Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

#### Armature winding inductance, La — Inductance

scalar

Armature winding inductance, in H.

#### Dependencies

To enable this parameter, select Separately Excited DC Motor for the  ${\bf Motor}\ {\bf Type}$  parameter.

#### Field winding resistance, Rf — Resistance

scalar

Field winding resistance, in ohm.

#### Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.
### Field winding inductance, Lf — Inductance

scalar

Field winding inductance, in H.

### Dependencies

To enable this parameter, select Separately Excited DC Motor for the  ${\bf Motor}\ {\bf Type}\ {\bf parameter}.$ 

## Mutual inductance, Laf — Inductance scalar

Mutual inductance, in H.

### Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

## Initial armature and field current, Iaf — Current

vector

Initial armature and field current, in A.

### Dependencies

To enable this parameter, select Separately Excited DC Motor for the Motor Type parameter.

### Permanent Magnet Excited DC Motor

## Armature winding resistance, Rapm — Resistance scalar

Armature winding resistance, in ohm.

### Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

# Armature winding inductance, Lapm — Inductance scalar

Armature winding inductance, in H.

#### Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

**Torque constant, Kt – Motor torque constant** scalar

Motor torque constant, in N.m/A.

#### Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

### Initial armature current, Ia - Current

scalar

Initial armature current, in A.

#### Dependencies

To enable this parameter, select Permanent Magnet Excited DC Motor for the **Motor Type** parameter.

Series Excited DC Motor

**Total resistance, Rser — Resistance** scalar

Series connected field and armature resistance, in ohm.

#### Dependencies

To enable this parameter, select  ${\tt Series}$   ${\tt Excited}$  DC  ${\tt Motor}$  for the  ${\tt Motor}$   ${\tt Type}$  parameter.

## Total inductance, Lser — Inductance scalar

Series connected field and armature inductance, in H.

### Dependencies

To enable this parameter, select  ${\tt Series}$   ${\tt Excited}$  DC  ${\tt Motor}$  for the  ${\tt Motor}$   ${\tt Type}$  parameter.

### Initial current, Iafser - Current

scalar

Initial series current, in A.

### Dependencies

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

### Mutual inductance, Lafser — Inductance

scalar

Field and armature mutual inductance, in H.

### Dependencies

To enable this parameter, select Series Excited DC Motor for the Motor Type parameter.

### References

[1] Krause, P. C. Analysis of Electric Machinery. New York: McGraw-Hill, 1994.

## See Also

Reduced Lundell Alternator

### Introduced in R2017a

## **Bidirectional DC-DC**

DC-to-DC converter that supports bidirectional boost and buck Library: Energy Storage and Auxiliary Drive / DC-DC



## Description

The Bidirectional DC-DC block implements a DC-to-DC converter that supports bidirectional boost and buck (lower) operation. Unless the DC-to-DC conversion limits the power, the output voltage tracks the voltage command. You can specify electrical losses or measured efficiency.

Depending on your battery system configuration, the voltage might not be at a potential that is required by electrical system components such has inverters and motors. You can use the block to boost or buck the voltage. Connect the block to the battery and one of these blocks:

- Mapped Motor
- IM Controller
- Interior PM Controller
- Surface Mount PM Controller

To calculate the electrical loss during the DC-to-DC conversion, use **Parameterize losses** by.

| Parameter Option                 | Description                                                                  |
|----------------------------------|------------------------------------------------------------------------------|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for conversion efficiency. |

| Parameter Option             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabulated loss data          | Electrical loss calculated as a function of load current and<br>voltage. DC-to-DC converter data sheets typically provide<br>loss data in this format. When you use this option, provide<br>data for all the operating quadrants in which the simulation<br>will run. If you provide partial data, the block assumes the<br>same loss pattern for other quadrants. The block does not<br>extrapolate loss that is outside the range voltage and<br>current that you provide. The block allows you to account<br>for fixed losses that are still present for zero voltage or<br>current. |
| Tabulated efficiency<br>data | <ul> <li>Electrical loss calculated using conversion efficiency that is a function of load current and voltage. When you use this option, provide data for all the operating quadrants in which the simulation will run. If you provide partial data, the block assumes the same efficiency pattern for other quadrants. The block:</li> <li>Assumes zero loss when either the voltage or current is</li> </ul>                                                                                                                                                                         |
|                              | <ul> <li>zero.</li> <li>Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                             |

**Note** The block does not support inversion. The polarity of the input voltage matches the polarity of the output voltage.

### Theory

The Bidirectional DC-DC block uses the commanded voltage and the actual voltage to determine whether to boost or buck (lower) the voltage. You can specify a time constant for the voltage response.

| lf                        | Then  |
|---------------------------|-------|
| $Volt_{cmd} > Src_{Volt}$ | Boost |
| $Volt_{cmd} < Src_{Volt}$ | Buck  |

The Bidirectional DC-DC block uses a time constant-based regulator to provide a fixed output voltage that is independent of load current. Using the output voltage and current, the block determines the losses of the DC-to-DC conversion. The block uses the conversion losses to calculate the input current. The block accounts for:

- Bidirectional current flow
  - Source to load Battery discharge
  - Load to source Battery charge
- Rated power limits

The block provides voltage control that is power limited based on these equations. The voltage is fixed. The block does not implement a voltage drop because the load current approximates DC-to-DC conversion with a bandwidth that is greater than the load current draw.

| DC-to-DC converter load<br>voltage                 | $LdVolt_{Cmd} = \min(Volt_{Cmd}, \frac{P_{limit}}{Ld_{Amp}}, 0)$ $LdVolt = LdVolt_{Cmd} \cdot \frac{1}{\tau s + 1}$ |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Power loss for single efficiency source to load    | $Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Volt} \cdot Ld_{Amp}$                                                 |
| Power loss for single efficiency<br>load to source | $Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot \left  Ld_{Volt} \cdot Ld_{Amp} \right $                                  |
| Power loss for tabulated efficiency                | $Prw_{Loss} = f\left(Ld_{Volt}, Ld_{Amp}\right)$                                                                    |
| Source current draw from DC-<br>to-DC converter    | $Src_{Amp} = \frac{Ld_{Pwr} + Prw_{Loss}}{Src_{Volt}}$                                                              |
| Source power from DC-to-DC converter               | $Src_{Pwr} = Src_{Amp} \cdot Src_{Volt}$                                                                            |

The equations use these variables.

| $Volt_{Cmd}$               | DC-to-DC converter commanded output voltage                                                                                                 |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $Src_{Volt}$               | Source input voltage to DC-to-DC converter                                                                                                  |
| $Ld_{Amp}$                 | Load current of DC-to-DC converter                                                                                                          |
| $Ld_{Volt}$                | Load voltage of DC-to-DC converter                                                                                                          |
| $Src_{Amp}$                | Source current draw from DC-to-DC converter                                                                                                 |
| τ                          | Conversion time constant                                                                                                                    |
| $V_{init}$                 | Initial load voltage of the DC-to-DC converter                                                                                              |
| $P_{limit}$                | Output power limit for DC-to-DC converter                                                                                                   |
| Eff                        | Input to output efficiency                                                                                                                  |
| $Src_{Pwr}$                | Source power to DC-to-DC converter                                                                                                          |
| $Ld_{Pwr}$                 | Load power from DC-to-DC converter                                                                                                          |
| <i>Pwr</i> <sub>Loss</sub> | Power loss                                                                                                                                  |
| LdVolt <sub>Cmd</sub>      | $\label{eq:commanded} \begin{array}{l} \mbox{Commanded load voltage of DC-to-DC converter before application of time constant} \end{array}$ |
|                            |                                                                                                                                             |

## Ports

### Inputs

### VoltCmd — Commanded voltage

scalar

DC-to-DC converter commanded output voltage,  $Volt_{Cmd}$ , in V.

## SrcVolt — Input voltage

scalar

Source input voltage to DC-to-DC converter,  $Src_{Volt}$ , in V.

### **LdCurr – Load current** scalar

Load current of DC-to-DC converter,  $Ld_{Amp}$ , in A.

### Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    | Description                                                                            | Variable              | Units |
|-----------|----------------------------------------------------------------------------------------|-----------------------|-------|
| SrcPwr    | Source power to DC-to-DC converter                                                     | Src <sub>Pwr</sub>    | W     |
| LdPwr     | Load power from DC-to-DC<br>converter                                                  | $Ld_{Pwr}$            | W     |
| PwrLoss   | Power loss                                                                             | Pwr <sub>Loss</sub>   | W     |
| LdVoltCmd | Commanded load voltage of<br>DC-to-DC converter before<br>application of time constant | LdVolt <sub>Cmd</sub> | V     |

### LdVolt — Load voltage

scalar

Load voltage of DC-to-DC converter, Ld<sub>Volt</sub>, in V.

### SrcCurr — Source current

scalar

Source current draw from DC-to-DC converter, *Src*<sub>Amp</sub>, in A.

## **Parameters**

### **Electrical Control**

**Converter response time constant — Constant** scalar

Converter response time,  $\tau$ , in s.

**Converter response initial voltage, Vinit — Voltage** scalar

Initial load voltage of the DC-to-DC converter,  $V_{init}$ , in V.

### Converter power limit, Plimit - Power

scalar

Initial load voltage of the DC-to-DC converter,  $P_{limit}$ , in W.

#### **Electrical Losses**

### Parameterize losses by — Loss calculation

```
Single efficiency measurement (default) | Tabulated loss dataTabulated efficiency data
```

This table summarizes the loss options used to calculate electrical options.

| Parameter Option                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for conversion efficiency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Tabulated loss data              | Electrical loss calculated as a function of load current and<br>voltage. DC-to-DC converter data sheets typically provide<br>loss data in this format. When you use this option, provide<br>data for all the operating quadrants in which the simulation<br>will run. If you provide partial data, the block assumes the<br>same loss pattern for other quadrants. The block does not<br>extrapolate loss that is outside the range voltage and<br>current that you provide. The block allows you to account<br>for fixed losses that are still present for zero voltage or<br>current. |

| Parameter Option             | Description                                                                                                                                                                                                                                                                                                                               |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabulated efficiency<br>data | Electrical loss calculated using conversion efficiency that is<br>a function of load current and voltage. When you use this<br>option, provide data for all the operating quadrants in<br>which the simulation will run. If you provide partial data,<br>the block assumes the same efficiency pattern for other<br>quadrants. The block: |
|                              | • Assumes zero loss when either the voltage or current is zero.                                                                                                                                                                                                                                                                           |
|                              | • Uses linear interpolation to determine the loss. At lower power conditions, for calculation accuracy, provide efficiency at low voltage and low current.                                                                                                                                                                                |

#### Overall DC to DC converter efficiency, eff - Constant scalar

Overall conversion efficiency, *Eff*, in %.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select Single efficiency measurement.

### Vector of voltages (v) for tabulated loss, v\_loss\_bp — Breakpoints 1-by-M matrix

Tabulated loss breakpoints for M load voltages, in V.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

### Vector of currents (i) for tabulated loss, i\_loss\_bp - Breakpoints 1-by-N matrix

Tabulated loss breakpoints for N load currents, in A.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

#### **Corresponding losses, losses\_table — 2-D lookup table** N-bv-M matrix

Electrical loss map, as a function of N load currents and M load voltages, in W.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

# Vector of voltages (v) for tabulated efficiency, v\_eff\_bp — Breakpoints

1-by-M matrix

Tabulated efficiency breakpoints for M load voltages, in V.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

# Vector of currents (i) for tabulated efficiency, i\_eff\_bp — Breakpoints

1-by-N matrix

Tabulated efficiency breakpoints for N load currents, in A.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

### Corresponding efficiency, efficiency\_table — 2-D lookup table

N-by-M matrix

Electrical efficiency map, as a function of N load currents and Mload voltages, in %.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

## See Also

Equivalent Circuit Battery | Estimation Equivalent Circuit Battery

### **Topics** Battery Modeling

Introduced in R2017b

# **Propulsion Blocks — Alphabetical** List

## **Boost Drive Shaft**

Boost drive shaft speed

Library: Propulsion / Combustion Engine Components / Boost



## Description

The Boost Drive Shaft block uses the compressor, turbine, and external torques to calculate the drive shaft speed. Use the block to model turbochargers and superchargers in an engine model.

You can specify these configurations:

- Turbocharger Connect the compressor to the turbine
  - Two-way ports for turbine and compressor connections
  - Option to add an externally applied input torque
- Compressor only Connect the drive shaft to the compressor
  - Two-way port for compressor connection
  - Externally applied input torque
- Turbine only Connect the drive shaft to the turbine
  - Two-way port for turbine connection
  - Externally applied load torque

For the Turbine only and Turbocharger configurations, the block modifies the turbine torque with a mechanical efficiency.

### **Equations**

The Boost Drive Shaft block applies Newton's Second Law for Rotation. Positive torques cause the drive shaft to accelerate. Negative torques impose a load and decelerate the drive shaft.

| Calculation      | Equations                                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Shaft dynamics   | $\frac{d\omega}{dt} = \frac{1}{J_{shaft}} \left( \eta_{mech} \tau_{turb} + \tau_{comp} + \tau_{ext} \right)$ with initial speed $\omega_0$ |
| Speed constraint | $\omega_{min} \le \omega \le \omega_{max}$                                                                                                 |
| Power loss       | $\dot{W}_{loss} = \omega \tau_{turb} \left( 1 - \eta_{mech} \right)$                                                                       |

The block also calculates the power loss due to mechanical inefficiency.

The equations use these variables.

| ω                | Shaft speed                               |
|------------------|-------------------------------------------|
| $\omega_0$       | Initial drive shaft speed                 |
| $\omega_{min}$   | Minimum drive shaft speed                 |
| $\omega_{max}$   | Maximum drive shaft speed                 |
| $J_{shaft}$      | Shaft inertia                             |
| $\eta_{max}$     | Mechanical efficiency of turbine          |
| $	au_{comp}$     | Compressor torque                         |
| $	au_{turb}$     | Turbine torque                            |
| $	au_{ext}$      | Externally applied torque.                |
| $\dot{W}_{loss}$ | Power loss due to mechanical inefficiency |

## Ports

### Input

### **Cmprs — Compressor torque**

two-way connector port

Compressor torque,  $\tau_{comp}$ , in N.m.

#### Dependencies

To create this port, for the **Configuration** parameter, select **Turbocharger** or **Compressor only**.

### Turb — Turbine torque

two-way connector port

Turbine torque,  $\tau_{turb}$ , in N.m.

#### Dependencies

To create this port, for the **Configuration** parameter, select Turbocharger or Turbine only.

### ExtTrq — Externally applied torque

scalar

Externally applied torque,  $\tau_{ext}$ , in N.m.

### Dependencies

For turbocharger configurations, to create this port, set **Additional torque input** to External torque input.

### Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal       | Description             | Variable                 | Units |
|--------------|-------------------------|--------------------------|-------|
| DriveshftSpd | Shaft speed             | ω                        | rad/s |
| MechPwrLoss  | Mechanical power loss   | <i>W</i> <sub>loss</sub> | W     |
| ExtTrq       | Applied external torque | τ <sub>ext</sub>         | N.m   |

### Cmprs — Compressor speed

two-way connector port

Compressor speed,  $\omega$ , in rad/s.

#### Dependencies

To create this port, for the **Configuration** parameter, select **Turbocharger** or **Compressor only**.

### Turb — Turbine speed

two-way connector port

Turbine speed,  $\omega$ , in N.m.

#### Dependencies

To create this port, for the **Configuration** parameter, select Turbocharger or Turbine only.

## **Parameters**

### **Block Options**

### Configuration — Specify configuration

Turbocharger(default) | Turbine only | Compressor only

### Dependencies

- Selecting Turbocharger or Compressor only creates the Cmprs port.
- Selecting Turbocharger or Turbine only creates the Turb port.

### Additional torque input — Specify external torque input

External torque input (default) | No external torque input

### Dependencies

- To enable this parameter, select a Turbocharger configuration.
- To create the Trq port, select External torque input.

### Shaft inertia, J\_shaft — Inertia

scalar

Shaft inertia,  $J_{shaft}$ , in kg\*m^2.

Initial shaft speed, w\_0 - Speed
scalar

Initial drive shaft speed,  $\omega_0$ , in rad/s.

Min shaft speed, w\_min — Speed
scalar

Minimum drive shaft speed,  $\omega_{min}$ , in rad/s.

Max shaft speed, w\_max — Speed
scalar

Maximum drive shaft speed,  $\omega_{max}$ , in rad/s.

Turbine mechanical efficiency, eta\_mech — Efficiency
scalar

Mechanical efficiency of turbine  $\eta_{max}$ .

### Dependencies

To enable this parameter, select the Turbocharger or Turbine only configuration.

## See Also

Compressor | Turbine

### Introduced in R2017a

## **CI Controller**

Compression-ignition controller that includes air mass flow, torque, and EGR estimation
Library: Propulsion / Combustion Engine Controllers



## Description

The CI Controller block implements a compression-ignition (CI) controller with air mass flow, torque, exhaust gas recirculation (EGR) flow, exhaust back-pressure, and exhaust gas temperature estimation. You can use the CI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine block requires the commands that are output from the CI Controller block.

The block uses the commanded torque and measured engine speed to determine these open-loop actuator commands:

- Injector pulse-width
- Fuel injection timing
- Variable geometry turbocharger (VGT) rack position
- EGR valve area percent

The CI Controller block has two subsystems:

• The Controller subsystem — Determines the commands based on tables that are functions of commanded torque and measured engine speed.

| Based On              | Determines Commands for |
|-----------------------|-------------------------|
| Commanded torque      | Injector pulse-width    |
| Measured engine speed | Fuel injection timing   |
|                       | VGT rack position       |
|                       | EGR valve area percent  |

• The Estimator subsystem — Determines estimates based on these engine attributes.

| Based On                               | Estimates                 |
|----------------------------------------|---------------------------|
| Measured engine speed                  | Air mass flow             |
| Fuel injection timing                  | Torque                    |
| Cycle average intake manifold pressure | Exhaust gas temperature   |
|                                        | Exhaust gas back-pressure |
| Fuel injector pulse-width              | EGR valve gas mass flow   |
| Absolute ambient pressure              |                           |
| EGR valve area percent                 |                           |
| VGT rack position                      |                           |
| VGT speed                              |                           |

The figure illustrates the signal flow.



The figure uses these variables.

| Ν                            | Engine speed                                                                                          |
|------------------------------|-------------------------------------------------------------------------------------------------------|
| MAP                          | Cycle average intake manifold absolute pressure                                                       |
| MAT                          | Cycle average intake manifold gas absolute temperature                                                |
| EGRap,<br>EGR <sub>cmd</sub> | $\ensuremath{EGR}$ value area percent and $\ensuremath{EGR}$ value area percent command, respectively |
| $VGT_{pos}$                  | VGT rack position                                                                                     |
| $N_{vgt}$                    | Corrected turbocharger speed                                                                          |
| $RP_{cmd}$                   | VGT rack position command                                                                             |
| Pwinj                        | Fuel injector pulse-width                                                                             |
| MAINSOI                      | Start of injection timing for main fuel injection pulse                                               |

The Model-Based Calibration Toolbox  ${}^{\rm TM}$  was used to develop the tables that are available with the Powertrain Blockset.

### Controller

The controller governs the combustion process by commanding VGT rack position, EGR valve area percent, fuel injection timing, and injector pulse-width. Feedforward lookup tables, which are functions of measured engine speed and commanded torque, determine the control commands.

The controller commands the EGR valve area percent and VGT rack position. Changing the VGT rack position modifies the turbine flow characteristics. At low-requested torques, the rack position can reduce the exhaust back pressure, resulting in a low turbocharger speed and boost pressure. When the commanded fuel requires additional air mass flow, the rack position is set to close the turbocharger vanes, increasing the turbocharger speed and intake manifold boost pressure.

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed

$$RP_{cmd} = f_{RPcmd}(Trq_{cmd}, N)$$

where:

- *RP<sub>cmd</sub>* is VGT rack position command, in percent.
- *Trq<sub>cmd</sub>* is commanded engine torque, in N.m.
- *N* is engine speed, in rpm.



The commanded exhaust gas recirculation (EGR) valve area percent lookup table is a function of commanded torque and engine speed

$$EGR_{cmd} = f_{EGRcmd}(Trq_{cmd}, N)$$

where:

- *EGR*<sub>cmd</sub> is commanded EGR valve area percent, in percent.
- *Trq<sub>cmd</sub>* is commanded engine torque, in N.m.
- *N* is engine speed, in rpm.



To initiate combustion, a CI engine injects fuel directly into the combustion chamber. After the injection, the fuel spontaneously ignites, increasing cylinder pressure. The total mass of the injected fuel and main injection timing determines the torque production.

Assuming constant fuel rail pressure, the CI controller commands the injector pulse-width based on the total requested fuel mass:

$$Pw_{inj} = \frac{F_{cmd,tot}}{S_{inj}}$$

The equation uses these variables.

|                      | Fuel injector pulse-width               |
|----------------------|-----------------------------------------|
| $Pw_{inj}$           | 5                                       |
| $S_{inj}$            | Fuel injector slope                     |
| F <sub>cmd,tot</sub> | Commanded total fuel mass per injection |
| MAINSOI              | Main start-of-injection timing          |
| Ν                    | Engine speed                            |

The commanded total fuel mass per injection table is a function of the torque command and engine speed

$$F_{cmd,tot} = f_{Fcmd,tot}(Trq_{cmd}, N)$$

where:

- $F_{cmd,tot} = F$  is commanded total fuel mass per injection, in mg per cylinder.
- $Trq_{cmd}$  is commanded engine torque, in N.m.
- *N* is engine speed, in rpm. ٠



The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed

 $M\!AINSOI = f(F_{cmd,tot},N)$ 

where:

- *MAINSOI* is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- $F_{cmd,tot} = F$  is commanded fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.

| lf                                          | Idle Speed Controller |
|---------------------------------------------|-----------------------|
| $Trq_{cmd,input} < Trq_{idlecmd,enable}$    | Enabled               |
| $Trq_{idlecmd,enable} \leq Trq_{cmd,input}$ | Not enabled           |

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:

$$C_{idle}(z) = K_{p,idle} + K_{i,idle} \frac{t_s}{z-1}$$

The idle speed commanded torque must be less than the maximum commanded torque:

 $0 \le Trq_{idlecomd} \le Trq_{idlecmd,max}$ 

Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ( $Trq_{cmd,input} < Trq_{idlecmd,enable}$ ), the commanded engine torque is given by:

 $Trq_{cmd} = \max(Trq_{cmd,input}, Trq_{idlecmd}).$ 

The equations use these variables.

| <i>Trq<sub>cmd</sub></i>      | Commanded engine torque                      |
|-------------------------------|----------------------------------------------|
| Trq <sub>cmd,input</sub>      | Input commanded engine torque                |
| Trq <sub>idlecmd,enable</sub> | Threshold for enabling idle speed controller |
| Trq <sub>idlecmd</sub>        | Idle speed controller commanded torque       |
| Trq <sub>idlecmd,max</sub>    | Maximum commanded torque                     |
| $N_{idle}$                    | Base idle speed                              |
| $K_{p,idle}$                  | Idle speed controller proportional gain      |
| K <sub>i,idle</sub>           | Idle speed controller integral gain          |

### Estimator

Using the CI Core Engine block, the CI Controller block estimates the air mass flow rate, EGR valve mass flow, exhaust back-pressure, engine torque, AFR, and exhaust temperature from sensor feedback. The Info port provides the estimated values, but block does not use them to determine the open-loop engine actuator commands.

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

To calculate the estimated exhaust gas recirculation (EGR) valve mass flow, the block calculates the EGR flow that would occur at standard temperature and pressure conditions, and then corrects the flow to actual temperature and pressure conditions. The block EGR calculation uses estimated exhaust back-pressure, estimated exhaust temperature, standard temperature, and standard pressure.

$$\dot{m}_{egr,est} = \dot{m}_{egr,std} \frac{P_{exh,est}}{P_{std}} \sqrt{\frac{T_{std}}{T_{exh,est}}}$$

• The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area

$$\dot{m}_{egr,std} = f(\frac{MAP}{P_{exh,est}}, EGRap)$$

where:

.

 $\dot{m}_{egr,std}$  is the standard EGR valve mass flow, in g/s.

• *P*<sub>exh,est</sub> is the estimated exhaust back-pressure, in Pa.

- *MAP* is the cycle average intake manifold absolute pressure, in Pa.
- *EGRap* is the measured EGR valve area, in percent.



The equations use these variables.

| m                    | Estimated EGR valve mass flow                            |
|----------------------|----------------------------------------------------------|
| egr,est              | Standard EGR valve mass flow                             |
| m <sub>egr,std</sub> | Standard pressure                                        |
| P <sub>std</sub>     | Standard temperature                                     |
| T <sub>std</sub>     | Estimated exhaust manifold gas temporature               |
| I exh,est            | Estimated exhaust mannoid gas temperature                |
| MAP                  | Measured cycle average intake manifold absolute pressure |
| P <sub>exh,est</sub> | Estimated exhaust back-pressure                          |
| $P_{Amb}$            | Absolute ambient pressure                                |

*EGRap* Measured EGR valve area percent

To estimate the EGR valve mass flow, the block requires an estimate of the exhaust backpressure. To estimate the exhaust back-pressure, the block uses the ambient pressure and the turbocharger pressure ratio.

 $P_{exh,est} = P_{Amb}Pr_{turbo}$ 

For the turbocharger pressure ration calculation, the block uses two lookup tables. The first lookup table determines the approximate turbocharger pressure ratio as a function of turbocharger mass flow and corrected turbocharger speed. Using a second lookup table, the block corrects the approximate turbocharger pressure ratio for VGT rack position.

$$Pr_{turbo} = f(\dot{m}_{airstd}, N_{vgtcorr})f(VGT_{pos})$$
  
where:

$$N_{vgtcorr} = \frac{N_{vgt}}{\sqrt{T_{exh,est}}}$$

The equations use these variables.

| ***                  | Estimated EGR valve mass flow                                   |
|----------------------|-----------------------------------------------------------------|
| m <sub>egr,est</sub> | Standard EGR valve mass flow                                    |
| $\dot{m}_{egr,std}$  |                                                                 |
|                      | Estimated intake port mass flow rate                            |
| $\dot{m}_{port,est}$ |                                                                 |
| $\dot{m}_{airstd}$   | Standard air mass flow                                          |
| EGRap                | Measured EGR valve area                                         |
| MAP                  | Measured cycle average intake manifold absolute pressure        |
| MAT                  | Measured cycle average intake manifold gas absolute temperature |
| P <sub>std</sub>     | Standard pressure                                               |
| T <sub>std</sub>     | Standard temperature                                            |

| T <sub>exh,est</sub>      | Estimated exhaust manifold gas temperature                                   |
|---------------------------|------------------------------------------------------------------------------|
| Pr <sub>vgtcorr</sub>     | $Turbocharger \ pressure \ ratio \ correction \ for \ VGT \ rack \ position$ |
| <i>Pr<sub>turbo</sub></i> | Turbocharger pressure ratio                                                  |
| P <sub>exh,est</sub>      | Estimated exhaust back-pressure                                              |
| $P_{Amb}$                 | Absolute ambient pressure                                                    |
| $N_{vgtcorr}$             | Corrected turbocharger speed                                                 |
| $VGT_{pos}$               | Measured VGT rack position                                                   |

The exhaust-back pressure calculation uses these lookup tables:

• The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected

turbocharger speed,  $Pr_{turbo} = f(\dot{m}_{airstd}, N_{vgtcorr})$ , where:

- *Pr<sub>turbo</sub>* is the turbocharger pressure ratio, corrected for VGT speed.
  - $\dot{m}_{airstd}$  is the standard air mass flow, in g/s.
- $N_{vatcorr}$  is the corrected turbocharger speed, in rpm/K<sup>(1/2)</sup>.



To calculate the standard air mass flow through the turbocharger, the block uses conservation of mass, the estimated intake port, and EGR mass flows (from the last estimated calculation). The calculation assumes negligible exhaust manifold filling dynamics.

$$\dot{m}_{airstd} = (\dot{m}_{port,est} - \dot{m}_{egr,est}) \frac{P_{std}}{MAP} \sqrt{\frac{MAT}{T_{std}}}$$

- The variable geometry turbocharger pressure ratio correction is a function of the rack position, *Pr<sub>vgtcorr</sub>= f(VGT<sub>pos</sub>)*, where:
  - *Pr<sub>vgtcorr</sub>* is the turbocharger pressure ratio correction.
  - *VGT*<sub>pos</sub> is the variable geometry turbocharger (VGT) rack position.



To calculate the engine torque, you can configure the CI controller to use either of these torque models.

| Brake Torque Model                    | Description                                                                                                                                             |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| "CI Engine Torque Structure<br>Model" | Model accounts for the reduction in engine torque as these engine conditions vary from nominal:                                                         |  |
|                                       | Fuel injection timing                                                                                                                                   |  |
|                                       | Intake manifold gas temperature and pressure                                                                                                            |  |
|                                       | Unburned cylinder air mass                                                                                                                              |  |
| "CI Engine Simple Torque Model"       | For the simple engine torque calculation, the CI<br>engine uses a torque lookup table map that is a<br>function of engine speed and injected fuel mass. |  |

The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed  $% \left[ \left( {{{\mathbf{x}}_{i}}} \right) \right]$ 

$$T_{exh} = f_{Texh}(F, N)$$

where:

- $T_{exh}$  is exhaust temperature, in K.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



The measured engine speed and fuel injector pulse-width determine the commanded fuel mass flow rate:

$$\dot{m}_{fuel,cmd} = \frac{NS_{inj}Pw_{inj}N_{cyl}}{Cps\left(\frac{60s}{min}\right)\left(\frac{1000mg}{g}\right)}$$

The commanded total fuel mass flow and estimated port mass flow rates determine the estimated AFR:

$$AFR_{est} = \frac{\dot{m}_{port,est}}{\dot{m}_{fuel,cmd}}$$

The equations use these variables.

|                          | Fuel injector pulse-width                            |
|--------------------------|------------------------------------------------------|
| $Pw_{inj}$               |                                                      |
| $AFR_{est}$              | Estimated air-fuel ratio                             |
|                          | Commanded fuel mass flow rate                        |
| $\dot{m}_{\it fuel,cmd}$ |                                                      |
| ~                        | Fuel injector slope                                  |
| $S_{inj}$                |                                                      |
| Ν                        | Engine speed                                         |
| $N_{cyl}$                | Number of engine cylinders                           |
| Cps                      | Crankshaft revolutions per power stroke, rev/stroke  |
|                          | Total estimated engine air mass flow at intake ports |
| $\dot{m}_{port,est}$     |                                                      |

## Ports

### Input

TrqCmd — Commanded engine torque
scalar

Commanded engine torque,  $Trq_{cmd,input}$ , in N.m.

# EngSpd — Measured engine speed scalar

Measured engine speed, *N*, in rpm.

Map — Measured intake manifold absolute pressure scalar

Measured intake manifold absolute pressure, MAP, in Pa.

## Mat — Measured intake manifold absolute temperature scalar

Measured intake manifold absolute temperature, MAT, in K.

### AmbPrs — Ambient pressure

scalar

Absolute ambient pressure,  ${\it P}_{Amb}$  , in Pa.

# EgrVlvAreaPct — EGR valve area percent scalar

Measured EGR valve area percent, *EGRap*, in %.

# VgtPos — VGT speed scalar

Measured VGT rack position,  $VGT_{pos}$ .

# VgtSpd — VGT speed scalar

Measured VGT speed,  $N_{vgt}$ , in rpm.

## Ect — Engine cooling temperature

scalar

Engine cooling temperature,  $T_{coolant}$ , in K.

### Output

## Info — Bus signal bus

Bus signal containing these block calculations.

| Signal | Description               | Variable          | Units |
|--------|---------------------------|-------------------|-------|
| InjPw  | Fuel injector pulse-width | Pw <sub>inj</sub> | ms    |

| Signal           | Description                                | Variable                     | Units      |
|------------------|--------------------------------------------|------------------------------|------------|
| EgrVlvAreaPctCmd | EGR valve area percent command             | EGR <sub>cmd</sub>           | %          |
| TurbRackPosCmd   | VGT rack position command                  | RP <sub>cmd</sub>            | N/A        |
| TrqCmd           | Engine torque                              | <i>Trq<sub>cmd</sub></i>     | N.m        |
| FuelMassTotCmd   | Commanded total fuel mass per injection    | F <sub>cmd,tot</sub>         | mg         |
| FuelMainSoi      | Main start-of-injection timing             | MAINSOI                      | degATDC    |
| FuelMassFlwCmd   | Commanded fuel mass flow rate              | m <sub>fuel,cmd</sub>        | kg/s       |
| EstIntkPortFlw   | Estimated port mass flow rate              | <i>m</i> <sub>port,est</sub> | kg/s       |
| EstEngTrq        | Estimated engine torque                    | Trq <sub>est</sub>           | N.m        |
| EstExhManGasTemp | Estimated exhaust manifold gas temperature | T <sub>exh,est</sub>         | K          |
| EstExhPrs        | Estimated exhaust back-<br>pressure        | Pex                          | Pa         |
| EstEGRFlow       | EstEGRFlow                                 | EstEGRFlow                   | EstEGRFlow |
| EstAfr           | Estimated air-fuel ratio                   | AFR <sub>est</sub>           | N/A        |

### InjPw — Fuel injector pulse-width

scalar

Fuel injector pulse-width,  $Pw_{inj}$ , in ms.

### FuelMainSoi — Fuel main injecting timing

scalar

Main start-of-injection timing, *MAINSOI*, in degrees crank angle after top dead center (degATDC).

TurbRackPosCmd — Rack position
scalar

VGT rack position command, *RP*<sub>cmd</sub>.

### EgrVlvAreaPctCmd — Intake cam phaser angle command

scalar

EGR valve area percent command, *EGR*<sub>cmd</sub>.

## **Parameters**

### Configuration

### Torque estimation model — Select torque estimation model

Torque Structure (default) | Simple Torque Lookup

To calculate the engine torque, you can configure the CI controller to use either of these torque models.

| Brake Torque Model                    | Description                                                                                                                                             |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| "CI Engine Torque Structure<br>Model" | Model accounts for the reduction in engine torque as these engine conditions vary from nominal:                                                         |
|                                       | • Fuel injection timing                                                                                                                                 |
|                                       | Intake manifold gas temperature and pressure                                                                                                            |
|                                       | Unburned cylinder air mass                                                                                                                              |
| "CI Engine Simple Torque Model"       | For the simple engine torque calculation, the CI<br>engine uses a torque lookup table map that is a<br>function of engine speed and injected fuel mass. |

### Dependencies

The table summarizes the parameter dependencies.

| Torque Model     | Enables Parameters on Estimation > Torque Tab                            |
|------------------|--------------------------------------------------------------------------|
| Torque Structure | Inner torque table, f_tq_inr                                             |
|                  | Friction torque table, f_tq_fric                                         |
|                  | Engine temperature modifier on friction torque,<br>f_fric_temp_mod       |
|                  | Engine temperature modifier breakpoints,<br>f_fric_temp_bpt              |
|                  | Pumping torque table, f_tq_pump                                          |
|                  | Inner torque fuel mass per injection breakpoints,<br>f_tq_inr_f_bpt      |
|                  | Inner torque speed breakpoints, f_tq_inr_n_bpt                           |
|                  | Main start of injection timing modifier on torque,<br>f_tq_mainsoi_mod   |
|                  | Main start of injection timing modifier breakpoints,<br>f_tq_mainsoi_bpt |
|                  | Intake manifold gas temperature modifier on torque,<br>f_tq_mat_mod      |
|                  | Intake manifold gas temperature modifier breakpoints,<br>f_tq_mat_bpt    |
|                  | Intake manifold gas pressure modifier on torque,<br>f_tq_map_mod         |
|                  | Intake manifold gas pressure modifier breakpoints,<br>f_tq_map_bpt       |
|                  | Unburned air mass per cylinder modifier on torque,<br>f_tq_apc_mod       |
|                  | Unburned air mass per cylinder modifier breakpoints,<br>f_tq_apc_bpt     |
| Torque Model  | Enables Parameters on Estimation > Torque Tab |
|---------------|-----------------------------------------------|
| Simple Torque | Torque table, f_tq_nf                         |
|               | Torque table load breakpoints, f_tq_nf_f_bpt  |
|               | Torque table speed breakpoints, f_tq_nf_n_bpt |

### Controls

Air

EGR valve area percent, f\_egrcmd — Lookup table
array

he commanded exhaust gas regirculation (ECP)

The commanded exhaust gas recirculation (EGR) value area percent lookup table is a function of commanded torque and engine speed  $\$ 

$$EGR_{cmd} = f_{EGRcmd}(Trq_{cmd}, N)$$

- *EGR*<sub>cmd</sub> is commanded EGR valve area percent, in percent.
- *Trq<sub>cmd</sub>* is commanded engine torque, in N.m.
- *N* is engine speed, in rpm.



Commanded torque breakpoints, f\_egr\_tq\_bpt — Breakpoints
vector

Commanded torque breakpoints, in N.m.

Speed breakpoints, f\_egr\_n\_bpt - Breakpoints
vector

Speed breakpoints, in rpm.

VGT rack position table, f\_rpcmd — Lookup table
array

The variable geometry turbocharger (VGT) rack position lookup table is a function of commanded torque and engine speed

$$RP_{cmd} = f_{RPcmd}(Trq_{cmd}, N)$$

- *RP<sub>cmd</sub>* is VGT rack position command, in percent.
- *Trq<sub>cmd</sub>* is commanded engine torque, in N.m.
- *N* is engine speed, in rpm.



Commanded torque breakpoints, f\_rp\_tq\_bpt — Breakpoints
vector

Breakpoints, in N.m.

## Speed breakpoints, f\_rp\_n\_bpt - Breakpoints vector

Breakpoints, in rpm.

Fuel

Injector slope, Sinj - Slope
scalar

Fuel injector slope,  $S_{ini}$ , in mg/ms.

## Stoichiometric air-fuel ratio, afr\_stoich - Ratio scalar

Stoichiometric air-fuel ratio, AFR<sub>stoich</sub>.

# Fuel mass per injection table, f\_fcmd\_tot — Lookup table array

The commanded total fuel mass per injection table is a function of the torque command and engine speed

 $F_{cmd,tot} = f_{Fcmd,tot}(Trq_{cmd},N)$ 

- $F_{cmd,tot} = F$  is commanded total fuel mass per injection, in mg per cylinder.
- $Trq_{cmd}$  is commanded engine torque, in N.m.
- *N* is engine speed, in rpm.



# Fuel main injection timing table, f\_main\_soi — Lookup table array

The main start-of-injection (SOI) timing lookup table is a function of commanded fuel mass and engine speed

$$MAINSOI = f(F_{cmd,tot}, N)$$

- *MAINSOI* is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- $F_{cmd,tot} = F$  is commanded fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



# Fuel main injection timing fuel breakponts, f\_main\_soi\_f\_bpt — Breakpoints

vector

Fuel main injection timing fuel breakpoints, in mg per injection.

# Fuel main injection timing speed breakponts, f\_main\_soi\_n\_bpt — Breakpoints

vector

Fuel main injection timing speed breakpoints, in rpm.

## Commanded torque breakpoints, f\_f\_tot\_tq\_bpt — Breakpoints vector

Commanded torque breakpoints, in N·m.

## Speed breakpoints, f\_f\_tot\_n\_bpt - Breakpoints vector

Speed breakpoints, in rpm.

#### Idle Speed

Base idle speed, N\_idle - Speed
scalar

Base idle speed,  $N_{idle}$ , in rpm.

## Enable torque command limit, Trq\_idlecmd\_enable — Torque scalar

Torque to enable the idle speed controller,  $Trq_{idlecmd,enable}$ , in N.m.

Maximum torque command, Trq\_idlecmd\_max — Torque
scalar

Maximum idle controller commanded torque, *Trq<sub>idlecmd,max</sub>*, in N.m.

```
Proportional gain, Kp_idle - Pl Controller
scalar
```

Proportional gain for idle speed control,  $K_{p,idle}$ , in N.m/rpm.

### Integral gain, Ki\_idle — PI Controller

scalar

Integral gain for idle speed control, *K*<sub>*i*,*idle*</sub>, in N.m/(rpm\*s).

### Estimation

Air

Number of cylinders, NCyl — Engine cylinders
scalar

Number of engine cylinders,  $N_{cyl}$ .

**Crank revolutions per power stroke, Cps — Revolutions per stroke** scalar

Crankshaft revolutions per power stroke, *Cps* , in rev/stroke.

**Total displaced volume, Vd — Volume** scalar

Displaced volume,  $V_d$ , in m^3.

### Ideal gas constant air, Rair - Constant scalar

Ideal gas constant,  $R_{air}$ , in J/(kg\*K).

Air standard pressure, Pstd — Pressure scalar

Standard air pressure,  $P_{std}$ , in Pa.

Air standard temperature, Tstd — Temperature
scalar

Standard air temperature,  $T_{std}$ , in K.

# Speed density volumetric efficiency, f\_nv — Lookup table array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed

$$\eta_v = f_{\eta_v}(MAP, N)$$

where:

- $\eta_n$  is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.



# Speed density intake manifold pressure breakpoints, f\_nv\_prs\_bpt — Breakpoints

vector

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

# Speed density engine speed breakpoints, f\_nv\_n\_bpt — Breakpoints vector

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

# EGR valve standard flow calibration, f\_egr\_stdflow — Lookup table array

The standard exhaust gas recirculation (EGR) mass flow is a lookup table that is a function of the standard flow pressure ratio and EGR valve flow area

$$\dot{m}_{egr,std} = f(\frac{MAP}{P_{exh,est}}, EGRap)$$

where:

- $\dot{m}_{egr,std}$  is the standard EGR valve mass flow, in g/s.
- *P*<sub>exh.est</sub> is the estimated exhaust back-pressure, in Pa.
- *MAP* is the cycle average intake manifold absolute pressure, in Pa.
- EGRap is the measured EGR valve area, in percent.



#### EGR valve standard flow pressure ratio breakpoints, f\_egr\_stdflow\_pr\_bpt — Breakpoints

vector

EGR valve standard flow pressure ratio breakpoints, dimensionless.

### EGR valve standard flow area percent breakpoints, f\_egr\_stdflow\_egrap\_bpt — Breakpoints vector

EGR valve standard flow area percent breakpoints, in percent.

# Turbocharger pressure ratio, f\_turbo\_pr — Lookup table array

The turbocharger pressure ratio, corrected for variable geometry turbocharger (VGT) speed, is a lookup table that is a function of the standard air mass flow and corrected

turbocharger speed,  $Pr_{turbo} = f(\dot{m}_{airstd}, N_{vgtcorr})$ , where:

- *Pr*<sub>turbo</sub> is the turbocharger pressure ratio, corrected for VGT speed.
- $\dot{m}_{airstd}$  is the standard air mass flow, in g/s.
- $N_{vatcorr}$  is the corrected turbocharger speed, in rpm/K<sup>(1/2)</sup>.



### Turbocharger pressure ratio standard flow breakpoints, f\_turbo\_pr\_stdflow\_bpt — Breakpoints

vector

Turbocharger pressure ratio standard flow breakpoints, in g/s.

#### Turbocharger pressure ratio corrected speed breakpoints, f\_turbo\_pr\_corrspd\_bpt — Breakpoints vector

Turbocharger pressure ratio corrected speed breakpoints, in  $rpm/K^{(1/2)}$ .

```
Turbocharger pressure ratio vgt position correction,
f_turbo_pr_vgtposcorr — Lookup table
array
```

The variable geometry turbocharger pressure ratio correction is a function of the rack position,  $Pr_{vgtcorr} = f(VGT_{pos})$ , where:

- *Pr<sub>vgtcorr</sub>* is the turbocharger pressure ratio correction.
- VGT<sub>pos</sub> is the variable geometry turbocharger (VGT) rack position.



Turbocharger pressure ratio vgt position correction breakpoints, f\_turbo\_pr\_vgtposcorr\_bpt — Breakpoints vector

Turbocharger pressure ratio VGT position correction breakpoints, dimensionless.

#### Torque

## Torque table, f\_tq\_nf — Lookup table array

For the simple torque lookup table model, the CI engine uses a lookup table is a function

of engine speed and injected fuel mass,  $T_{brake} = f_{Tnf}(F, N)$ , where:

- $Tq = T_{brake}$  is engine brake torque after accounting for engine mechanical and pumping friction effects, in N.m.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

# Torque table fuel mass per injection breakpoints, f\_tq\_nf\_f\_bpt — Breakpoints

vector

Torque table fuel mass per injection breakpoints, in mg per injection.

#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

## Torque table speed breakpoints, f\_tq\_nf\_n\_bpt — Breakpoints vector

Engine speed breakpoints, in rpm.

#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

## Inner torque table, f\_tq\_inr — Lookup table array

The inner torque lookup table,  $f_{Tqinr}$ , is a function of engine speed and injected fuel mass,  $Tq_{inr} = f_{Tqinr}(F, N)$ , where:

- $Tq_{inr}$  is inner torque based on gross indicated mean effective pressure, in N.m.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for Torque model, select Torque Structure.

### Friction torque table, f\_tq\_fric — Lookup table

array

The friction torque lookup table,  $f_{Tfric}$ , is a function of engine speed and injected fuel

mass,  $T_{fric} = f_{Tfric}(F, N)$ , where:

 $T_{fric}$  is friction torque offset to inner torque, in N.m.

- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Engine temperature modifier on friction torque, f\_fric\_temp\_mod - Lookup table

vector

Engine temperature modifier on friction torque,  $f_{fric,temp}$ , dimensionless.

#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Engine temperature modifier breakpoints, f\_fric\_temp\_bpt — Breakpoints

vector

Engine temperature modifier breakpoints, in K.

#### Dependencies

To enable this parameter, for Torque model, select Torque Structure.

## Pumping torque table, f\_tq\_pump — Lookup table array

The pumping torque lookup table,  $f_{Tpump}$ , is a function of engine speed and injected fuel mass,  $T_{pump}=f_{Tpump}(F,N)$ , where:

- $T_{pump}$  is pumping torque, in N.m.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Inner torque fuel mass per injection breakpoints, f\_tq\_inr\_f\_bpt — Breakpoints

vector

Inner torque fuel mass per injection breakpoints, in mg per injection.

#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Inner torque speed breakpoints, f\_tq\_inr\_n\_bpt — Breakpoints vector

Inner torque speed breakpoints.

#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

#### 

**4-38** 

The main start-of-injection (MAINSOI) torque modifier lookup table is a function of MAINSOI and engine speed  $Tmod_{mainsoi} = f_{mainsoi}(MAINSOI, N)$ , where:

- *Tmod*<sub>mainsoi</sub> is the torque modifier due to MAINSOI torque loss.
- *MAINSOI* is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

#### Main start of injection timing modifier breakpoints, f\_tq\_mainsoi\_bpt — Breakpoints

vector

Main start of injection timing modifier breakpoints, in degrees crank angle after top dead center (degATDC).

#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

#### Intake manifold gas temperature modifier on torque, f\_tq\_mat\_mod — Lookup table

array

The intake manifold gas temperature (MAT) torque modifier lookup table is a function of

MAT and engine speed,  $Tmod_{mat} = f_{mat}(MAT, N)$ , where:

- *Tmod<sub>mat</sub>* is the torque modifier due to MAT torque loss.
- *MAT* is the measured intake manifold gas pressure, in C.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Intake manifold gas temperature modifier breakpoints, f\_tq\_mat\_bpt — Breakpoints

vector

Intake manifold gas temperature modifier breakpoints, in °C.

#### Dependencies

To enable this parameter, for Torque model, select Torque Structure.

#### Intake manifold gas pressure modifier on torque, f\_tq\_map\_mod — Lookup table

array

The intake manifold absolute pressure (MAP) torque modifier lookup table is a function of

MAP and engine speed,  $Tmod_{map} = f_{map}(MAP, N)$ , where:

- *Tmod*<sub>map</sub> is the torque modifier due to MAP torque loss.
- *MAP* is the measured intake manifold absolute pressure, in kPa.

• *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Intake manifold gas pressure modifier breakpoints, f\_tq\_map\_bpt — Breakpoints

vector

Intake manifold gas pressure modifier breakpoints, in kPa.

#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Unburned air mass per cylinder modifier on torque, f\_tq\_apc\_mod — Lookup table

array

The unburned air per cylinder (APC) torque modifier lookup table is a function of APC and

engine speed,  $Tmod_{apc} = f_{apc}(APC, N)$ , where:

- *Tmod*<sub>apc</sub> is the torque modifier due to APC torque loss.
- *APC* is the unburned air per cylinder, in mg.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Unburned air mass per cylinder modifier breakpoints, f\_tq\_apc\_bpt — Breakpoints

vector

Unburned air mass per cylinder modifier breakpoints, in mg.

#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

#### Exhaust

## Exhaust temperature table, f\_t\_exh — Lookup table array

$$T_{exh} = f_{Texh}(F, N)$$

- $T_{exh}$  is exhaust temperature, in K.
- *F* is injected fuel mass, in mg per injection.



• *N* is engine speed, in rpm.

# Fuel mass per injection breakpoints, f\_t\_exh\_f\_bpt — Breakpoints vector

Engine load breakpoints used for exhaust temperature lookup table.

#### Speed breakpoints, f\_t\_exh\_n\_bpt — Breakpoints

vector

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

### References

- [1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
- [2] Sequenz, Heiko. Emission Modeling and Model-Based Optimisation of the Engine Control. VDI Fortschrittsberichte, 8. VDI Verlag, Düsseldorf, 2013.

### See Also

CI Core Engine | Mapped CI Engine

### Topics

"Engine Calibration Maps" "Generate Mapped CI Engine from a Spreadsheet"

#### Introduced in R2017a

## **CI Core Engine**

Compression-ignition engine from intake to exhaust port

Library: Propulsion / Combustion Engine Components / Core Engine



### Description

The CI Core Engine block implements a compression-ignition (CI) engine from intake to the exhaust port. You can use the block for hardware-in-the-loop (HIL) engine control design or vehicle-level fuel economy and performance simulations.

The CI Core Engine block calculates:

- Brake torque
- Fuel flow
- Air mass flow, including exhaust gas recirculation (EGR)
- Air-fuel ratio (AFR)
- Exhaust temperature and exhaust mass flow rate
- Engine-out (EO) exhaust emissions:
  - Hydrocarbon (HC)
  - Carbon monoxide (CO)
  - Nitric oxide and nitrogen dioxide (NOx)
  - Carbon dioxide (CO<sub>2</sub>)
  - Particulate matter (PM)

### **Air Mass Flow**

To calculate the air mass flow, the compression-ignition (CI) engine uses the "CI Engine Speed-Density Air Mass Flow Model". The speed-density model uses the speed-density equation to calculate the engine air mass flow, relating the engine intake port mass flow to the intake manifold pressure, intake manifold temperature, and engine speed.

### **Brake Torque**

To calculate the engine torque, you can configure the CI controller to use either of these torque models.

| Brake Torque Model                    | Description                                                                                                                                             |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| "CI Engine Torque Structure<br>Model" | Model accounts for the reduction in engine torque these engine conditions vary from nominal:                                                            |  |
|                                       | Fuel injection timing                                                                                                                                   |  |
|                                       | • Intake manifold gas temperature and pressure                                                                                                          |  |
|                                       | Unburned cylinder air mass                                                                                                                              |  |
| "CI Engine Simple Torque Model"       | For the simple engine torque calculation, the CI<br>engine uses a torque lookup table map that is a<br>function of engine speed and injected fuel mass. |  |

### **Fuel Flow**

To calculate the engine fuel mass flow, the CI Core Engine block uses fuel mass flow delivered by the injectors and the engine airflow.

$$\dot{m}_{fuel} = \frac{N \cdot N_{cyl}}{Cps \left(\frac{60s}{\min}\right) \left(\frac{1000mg}{g}\right)} \sum m_{fuel,inj}$$

The equation uses these variables.

 $\begin{array}{c} \qquad \qquad \text{Engine fuel mass flow, g/s} \\ \dot{m}_{fuel} \\ m_{fuel,inj} \quad \text{Fuel mass per injection} \end{array}$ 

| Cps    | Crankshaft revolutions per power stroke, rev/stroke |
|--------|-----------------------------------------------------|
| 7      | Number of engine cylinders                          |
| IN cyl |                                                     |
| N      | Engine speed, rpm                                   |

N Engine speed, rpm

### **Air-Fuel Ratio**

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.

$$AFR = \frac{\dot{m}_{air}}{\dot{m}_{fuel}}$$

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.

$$EGR_{pct} = 100 \frac{\dot{m}_{intk,b}}{\dot{m}_{intk}} = 100 y_{intk,b}$$

The equations use these variables.

| AFR                 | Air-fuel ratio                         |
|---------------------|----------------------------------------|
| $\dot{m}_{intk}$    | Engine air mass flow                   |
| ṁ <sub>fuel</sub>   | Fuel mass flow                         |
| yuuu<br>Yintk,b     | Intake burned mass fraction            |
| $EGR_{pct}$         | EGR percent                            |
|                     | Recirculated burned gas mass flow rate |
| m <sub>intk,b</sub> |                                        |

### Exhaust

The block calculates the:

- Exhaust gas temperature
- Exhaust gas-specific enthalpy
- Exhaust gas mass flow rate
- Engine-out (EO) exhaust emissions:
  - Hydrocarbon (HC)
  - Carbon monoxide (CO)
  - Nitric oxide and nitrogen dioxide (NOx)
  - Carbon dioxide (CO<sub>2</sub>)
  - Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.

$$h_{exh} = C p_{exh} T_{exh}$$

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.

$$\dot{m}_{exh} = \dot{m}_{intake} + \dot{m}_{fuel}$$

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.

$$\begin{split} y_{exh,i} &= f_{i\_frac}\left(T_{brake},N\right) \\ \dot{m}_{exh,i} &= \dot{m}_{exh}\,y_{exh,i} \end{split}$$

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.

$$y_{exh,air} = \max\left[y_{in,air} - \frac{\dot{m}_{fuel} + y_{in,fuel}\dot{m}_{intake}}{\dot{m}_{fuel} + \dot{m}_{intake}}AFR_s\right]$$

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.

$$y_{exh,b} = \max\left[(1 - y_{exh,air} - y_{exh,HC}), 0\right]$$

The equations use these variables.

| $T_{orb}$            | Engine exhaust temperature                                                   |
|----------------------|------------------------------------------------------------------------------|
| h <sub>exh</sub>     | Exhaust manifold inlet-specific enthalpy                                     |
| Cp <sub>exh</sub>    | Exhaust gas specific heat                                                    |
| m <sub>intk</sub>    | Intake port air mass flow rate                                               |
| m <sub>fuel</sub>    | Fuel mass flow rate                                                          |
| m <sub>exh</sub>     | Exhaust mass flow rate                                                       |
| Vin fuel             | Intake fuel mass fraction                                                    |
| Yexh,i               | Exhaust mass fraction for $i = CO_2$ , CO, HC, NOx, air, burned gas, and PM  |
| $\dot{m}_{exh,i}$    | Exhaust mass flow rate for $i = CO_2$ , CO, HC, NOx, air, burned gas, and PM |
| T <sub>brake</sub>   | Engine brake torque                                                          |
| Ν                    | Engine speed                                                                 |
| y <sub>exh,air</sub> | Exhaust air mass fraction                                                    |
| $y_{exh,b}$          | Exhaust air burned mass fraction                                             |

### Ports

### Input

#### FuelMass — Fuel injector pulse-width

vector

Fuel mass per injection,  $m_{fuel,inj}$ , in mg/injection.

## Soi — Start of fuel injection timing vector

4-49

Fuel injection timing, *SOI*, in degrees crank angle after top dead center (degATDC). First vector value, Soi(1), is main injection timing.

#### Dependencies

To enable this parameter, for Torque model, select Torque Structure.

#### EngSpd — Engine speed

scalar

Engine speed, *N*, in rpm.

#### Ect — Engine cooling temperature

scalar

Engine cooling temperature,  $T_{coolant}$ , in K.

#### Dependencies

To enable this parameter, for Torque model, select Torque Structure.

#### Intk — Intake port pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the upstream:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Intake port mass fractions, dimensionless. Exhaust gas recirculation (EGR) mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide

- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

**Exh** — **Exhaust port pressure, temperature, enthalpy, mass fractions** two-way connector port

Bus containing the exhaust:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- **PmMassFrac** Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

### Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal         | Description                                                                                                                                             | Variable           | Units |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|
| IntkGasMassFlw | Air mass flow entering<br>and exiting the engine<br>from the intake ports to<br>the exhaust ports.                                                      | $\dot{m}_{intk}$   | kg/s  |
| IntkAirMassFlw | Total engine air mass<br>flow at intake ports,<br>including EGR flow.                                                                                   | m <sub>port</sub>  | kg/s  |
| NrmlzdAirChrg  | Engine load (that is,<br>normalized cylinder air<br>mass) at arbitrary cam<br>phaser angles,<br>corrected for final<br>steady-state cam phase<br>angles | L                  | N/A   |
| Afr            | Air fuel ratio at engine exhaust port.                                                                                                                  | AFR                | N/A   |
| FuelMassFlw    | Fuel flow into engine                                                                                                                                   | m <sub>fuel</sub>  | kg/s  |
| ExhManGasTemp  | Exhaust gas<br>temperature at exhaust<br>manifold inlet                                                                                                 | T <sub>exh</sub>   | К     |
| EngTrq         | Engine brake torque                                                                                                                                     | T <sub>brake</sub> | N.m   |
| EngSpd         | Engine speed                                                                                                                                            | N                  | rpm   |

| Signal    | Description                                                            | Variable                                                                                                            | Units                  |
|-----------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------|
| CrkAng    | Engine crankshaft<br>absolute angle                                    | $\int_{0}^{(360)Cps} EngSpd \frac{180}{30} d\theta$<br>where $Cps$ is<br>crankshaft revolutions<br>per power stroke | degrees crank<br>angle |
| EgrPct    | EGR percent                                                            | EGR <sub>pct</sub>                                                                                                  | N/A                    |
| EoAir     | EO air mass flow rate                                                  | $\dot{m}_{exh}$                                                                                                     | kg/s                   |
| EoBrndGas | EO burned gas mass<br>flow rate                                        | Yexh,b                                                                                                              | kg/s                   |
| EoHC      | EO hydrocarbon<br>emission mass flow rate                              | Yexh,HC                                                                                                             | kg/s                   |
| EoC0      | EO carbon monoxide<br>emission mass flow rate                          | Yexh,CO                                                                                                             | kg/s                   |
| EoNOx     | EO nitric oxide and<br>nitrogen dioxide<br>emissions mass flow<br>rate | Yexh,NOx                                                                                                            | kg/s                   |
| EoC02     | EO carbon dioxide<br>emission mass flow rate                           | Yexh,CO2                                                                                                            | kg/s                   |
| EoPm      | EO particulate matter<br>emission mass flow rate                       | Yexh,PM                                                                                                             | kg/s                   |

#### EngTrq — Engine brake torque

scalar

Engine brake torque,  $T_{brake}$ , in N.m.

## **Intk** — **Intake port mass flow rate, heat flow rate, temperature, mass fraction** two-way connector port

Bus containing:

- MassFlwRate Intake port mass flow rate, in kg/s
- HeatFlwRate Intake port heat flow rate, in J/s
- ExhManGasTemp Intake port temperature, in K
- MassFrac Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

## **Exh** — **Exhaust port mass flow rate, heat flow rate, temperature, mass fraction** two-way connector port

Bus containing:

- MassFlwRate Exhaust port mass flow rate, in kg/s
- HeatFlwRate Exhaust heat flow rate, in J/s
- ExhManGasTemp Exhaust port temperature, in K
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel

- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

### **Parameters**

#### **Block Options**

#### Torque model — Select torque model

Torque Structure (default) | Simple Torque Lookup

To calculate the engine torque, you can configure the CI controller to use either of these torque models.

| Brake Torque Model                    | Description                                                                                                                                             |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| "CI Engine Torque Structure<br>Model" | Model accounts for the reduction in engine torque these engine conditions vary from nominal:                                                            |  |
|                                       | Fuel injection timing                                                                                                                                   |  |
|                                       | • Intake manifold gas temperature and pressure                                                                                                          |  |
|                                       | Unburned cylinder air mass                                                                                                                              |  |
| "CI Engine Simple Torque Model"       | For the simple engine torque calculation, the CI<br>engine uses a torque lookup table map that is a<br>function of engine speed and injected fuel mass. |  |

#### Dependencies

The table summarizes the parameter dependencies.

| Port Configuration | Enables Parameters                                                       |
|--------------------|--------------------------------------------------------------------------|
| Torque Structure   | Inner torque table, f_tq_inr                                             |
|                    | Friction torque table, f_tq_fric                                         |
|                    | Engine temperature modifier on friction torque,<br>f_fric_temp_mod       |
|                    | Engine temperature modifier breakpoints,<br>f_fric_temp_bpt              |
|                    | Pumping torque table, f_tq_pump                                          |
|                    | Inner torque fuel mass per injection breakpoints,<br>f_tq_inr_f_bpt      |
|                    | Inner torque speed breakpoints, f_tq_inr_n_bpt                           |
|                    | Main start of injection timing modifier on torque,<br>f_tq_mainsoi_mod   |
|                    | Main start of injection timing modifier breakpoints,<br>f_tq_mainsoi_bpt |
|                    | Intake manifold gas temperature modifier on torque,<br>f_tq_mat_mod      |
|                    | Intake manifold gas temperature modifier breakpoints,<br>f_tq_mat_bpt    |
|                    | Intake manifold gas pressure modifier on torque,<br>f_tq_map_mod         |
|                    | Intake manifold gas pressure modifier breakpoints,<br>f_tq_map_bpt       |
|                    | Unburned air mass per cylinder modifier on torque,<br>f_tq_apc_mod       |
|                    | Unburned air mass per cylinder modifier breakpoints,<br>f_tq_apc_bpt     |

| Port Configuration      | Enables Parameters                                                                                                     |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|
| Simple Torque<br>Lookup | Torque table, f_tq_nl<br>Torque table load breakpoints, f_tq_nl_l_bpt<br>Torque table speed breakpoints, f_tg_nl_n_bpt |

Air

```
Number of cylinders, NCyl — Engine cylinders scalar
```

Number of engine cylinders,  $N_{cyl}$ .

**Crank revolutions per power stroke, Cps — Revolutions per stroke** scalar

Crankshaft revolutions per power stroke, *Cps* , in rev/stroke.

### **Total displaced volume**, Vd — **Volume**

scalar

Displaced volume,  $V_d$ , in m^3.

### Ideal gas constant air, Rair — Constant scalar

Ideal gas constant,  $R_{air}$ , in J/(kg\*K).

## Air standard pressure, Pstd — Pressure scalar

Standard air pressure,  $P_{std}$ , in Pa.

## Air standard temperature, Tstd — Temperature scalar

Standard air temperature,  $T_{std}$ , in K.

# Speed-density volumetric efficiency, f\_nv — Lookup table array

The volumetric efficiency lookup table is a function of the intake manifold absolute pressure at intake valve closing (IVC) and engine speed

$$\eta_v = f_{\eta_v}(MAP, N)$$

where:

- $\eta_v$  is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.



# Speed-density intake manifold pressure breakpoints, f\_nv\_prs\_bpt — Breakpoints

array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

# Speed-density engine speed breakpoints, f\_nv\_n\_bpt — Breakpoints array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

#### Torque

## Torque table, f\_tq\_nf — Lookup table array

For the simple torque lookup table model, the CI engine uses a lookup table is a function

of engine speed and injected fuel mass,  $T_{brake} = f_{Tnf}(F, N)$ , where:

- $Tq = T_{brake}$  is engine brake torque after accounting for engine mechanical and pumping friction effects, in N.m.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

# Torque table fuel mass per injection breakpoints, f\_tq\_nf\_f\_bpt — Breakpoints

vector

Torque table fuel mass per injection breakpoints, in mg per injection.

#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

Torque table speed breakpoints, f\_tq\_nf\_n\_bpt - Breakpoints
vector

Engine speed breakpoints, in rpm.

#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

## Inner torque table, f\_tq\_inr — Lookup table array

The inner torque lookup table,  $f_{Tainr}$ , is a function of engine speed and injected fuel

mass,  $Tq_{inr} = f_{Tqinr}(F, N)$ , where:

 $Tq_{inr}$  is inner torque based on gross indicated mean effective pressure, in N.m.

- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for Torque model, select Torque Structure.
# Friction torque table, f\_tq\_fric — Lookup table array

The friction torque lookup table,  $f_{Tfric}$ , is a function of engine speed and injected fuel

mass,  $T_{fric} = f_{Tfric}(F, N)$ , where:

- $T_{fric}$  is friction torque offset to inner torque, in N.m.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

### Engine temperature modifier on friction torque, f\_fric\_temp\_mod — Lookup table

vector

Engine temperature modifier on friction torque,  $f_{fric,temp}$ , dimensionless.

### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Engine temperature modifier breakpoints, f\_fric\_temp\_bpt Breakpoints

vector

Engine temperature modifier breakpoints, in K.

### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

## Pumping torque table, f\_tq\_pump — Lookup table array

The pumping torque lookup table,  $f_{Tpump}$ , is a function of engine speed and injected fuel mass,  $T_{pump}=f_{Tpump}(F,N)$ , where:

- $T_{pump}$  is pumping torque, in N.m.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



### Dependencies

To enable this parameter, for Torque model, select Torque Structure.

# Inner torque fuel mass per injection breakpoints, f\_tq\_inr\_f\_bpt — Breakpoints

vector

Inner torque fuel mass per injection breakpoints, in mg per injection.

### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Inner torque speed breakpoints, f\_tq\_inr\_n\_bpt — Breakpoints vector

Inner torque speed breakpoints.

### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

### Main start of injection timing modifier on torque, f\_tq\_mainsoi\_mod - Lookup table

array

The main start-of-injection (MAINSOI) torque modifier lookup table is a function of

MAINSOI and engine speed  $Tmod_{mainsoi} = f_{mainsoi}(MAINSOI, N)$ , where:

- *Tmod<sub>mainsoi</sub>* is the torque modifier due to MAINSOI torque loss.
- *MAINSOI* is the main start-of-injection timing, in degrees crank angle after top dead center (degATDC).
- *N* is engine speed, in rpm.



### Dependencies

To enable this parameter, for Torque model, select Torque Structure.

```
Main start of injection timing modifier breakpoints,
f_tq_mainsoi_bpt — Breakpoints
vector
```

Main start of injection timing modifier breakpoints, in degrees crank angle after top dead center (degATDC).

### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

### Intake manifold gas temperature modifier on torque, f\_tq\_mat\_mod — Lookup table

array

The intake manifold gas temperature (MAT) torque modifier lookup table is a function of

MAT and engine speed,  $Tmod_{mat} = f_{mat}(MAT, N)$ , where:

- *Tmod<sub>mat</sub>* is the torque modifier due to MAT torque loss.
- MAT is the measured intake manifold gas pressure, in C.
- *N* is engine speed, in rpm.



### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Intake manifold gas temperature modifier breakpoints, f\_tq\_mat\_bpt — Breakpoints

vector

Intake manifold gas temperature modifier breakpoints, in °C.

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Intake manifold gas pressure modifier on torque, f\_tq\_map\_mod — Lookup table

array

The intake manifold absolute pressure (MAP) torque modifier lookup table is a function of

MAP and engine speed,  $Tmod_{map} = f_{map}(MAP, N)$ , where:

- *Tmod*<sub>map</sub> is the torque modifier due to MAP torque loss.
- *MAP* is the measured intake manifold absolute pressure, in kPa.
- *N* is engine speed, in rpm.



### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Intake manifold gas pressure modifier breakpoints, f\_tq\_map\_bpt — Breakpoints

vector

Intake manifold gas pressure modifier breakpoints, in kPa.

### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

# Unburned air mass per cylinder modifier on torque, f\_tq\_apc\_mod — Lookup table

array

The unburned air per cylinder (APC) torque modifier lookup table is a function of APC and

engine speed,  $Tmod_{apc} = f_{apc}(APC, N)$ , where:

- *Tmod*<sub>apc</sub> is the torque modifier due to APC torque loss.
- *APC* is the unburned air per cylinder, in mg.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for Torque model, select Torque Structure.

# Unburned air mass per cylinder modifier breakpoints, f\_tq\_apc\_bpt — Breakpoints

vector

Unburned air mass per cylinder modifier breakpoints, in mg.

### Dependencies

To enable this parameter, for **Torque model**, select **Torque Structure**.

Exhaust

Exhaust temperature table, f\_t\_exh — Lookup table
array

4-66

The lookup table for the exhaust temperature is a function of injected fuel mass and engine speed

$$T_{exh} = f_{Texh}(F, N)$$

where:

- $T_{exh}$  is exhaust temperature, in K.
- *F* is injected fuel mass, in mg per injection.
- *N* is engine speed, in rpm.



# Fuel mass per injection breakpoints, f\_t\_exh\_f\_bpt — Breakpoints array

Engine load breakpoints used for exhaust temperature lookup table, in mg.

### Speed breakpoints, f\_t\_exh\_n\_bpt - Breakpoints

array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

# **Exhaust gas specific heat at constant pressure, cp\_exh — Specific heat** scalar

Exhaust gas-specific heat,  $Cp_{exh}$ , in J/(kg\*K).

# CO2 mass fraction table, f\_CO2\_frac — Carbon dioxide (CO\_2) emission lookup table

array

The CI Core Engine  $CO_2$  emission mass fraction lookup table is a function of engine torque and engine speed, *CO2 Mass Fraction* = f(Speed, Torque), where:

- *CO2 Mass Fraction* is the CO<sub>2</sub> emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N.m.



#### Dependencies

To enable this parameter, on the **Exhaust** tab, select **CO2**.

# CO mass fraction table, f\_CO\_frac — Carbon monoxide (CO) emission lookup table

array

The CI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, CO Mass Fraction = f(Speed, Torque), where:

- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in N.m.



To enable this parameter, on the **Exhaust** tab, select **CO**.

# HC mass fraction table, f\_HC\_frac — Hydrocarbon (HC) emission lookup table

array

The CI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction = f(Speed, Torque), where:

- *HC Mass Fraction* is the HC emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N.m.



To enable this parameter, on the **Exhaust** tab, select **HC**.

# NOx mass fraction table, f\_NOx\_frac — Nitric oxide and nitrogen dioxide (NOx) emission lookup table

array

The CI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction = f(Speed, Torque), where:

- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- Speed is engine speed, in rpm.
- *Torque* is engine torque, in N.m.



To enable this parameter, on the **Exhaust** tab, select **NOx**.

# PM mass fraction table, f\_PM\_frac — Particulate matter (PM) emission lookup table

array

The CI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:

- *PM* is the PM emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N.m.

### Dependencies

To enable this parameter, on the **Exhaust** tab, select **PM**.

# Engine speed breakpoints, f\_exhfrac\_n\_bpt — Breakpoints vector

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.

Engine torque breakpoints, f\_exhfrac\_trq\_bpt — Breakpoints
vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in N.m.

### Dependencies

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.

Fuel

Stoichiometric air-fuel ratio, afr\_stoich — Air-fuel ratio
scalar

Air-fuel ratio, AFR.

### References

- [1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
- [2] Sequenz, Heiko. *Emission Modelling and Model-Based Optimisation of the Engine Control*. VDI Fortschrittsberichte, 8. Düsseldorf: VDI Verlag, 2013.

## See Also

CI Controller | Mapped CI Engine

### **Topics**

"CI Core Engine Air Mass Flow and Torque Production" "Engine Calibration Maps"

### Introduced in R2017a

## Compressor

Compressor for boosted engines Library: Propulsion / Combustion Engine Components / Boost



## Description

The Compressor block simulates engine boost by using the drive shaft energy to increase the intake manifold pressure. The block is a component of supercharger and turbocharger models. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. The control volumes provide the pressure, temperature, and specific enthalpy for the compressor to calculate the mass and energy flow rates. To calculate the torque and flow rates, the drive shaft provides the speed to the compressor. Typically, compressor manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. You can specify the lookup tables to calculate the mass flow rate and efficiency. The block does not support reverse mass flow.

The mass flows from the inlet control volume to the outlet control volume.



## Thermodynamics

The block uses these equations to model the thermodynamics.

| Calculation       | Equations             |
|-------------------|-----------------------|
| Forward mass flow | $\dot{m}_{comp} > 0$  |
|                   | $p_{01} = p_{inlet}$  |
|                   | $p_{02} = p_{outlet}$ |
|                   | $T_{01} = T_{inlet}$  |
|                   | $h_{01} = h_{inlet}$  |

| Calculation                    | Equations                                                                                                                                                                |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First law of thermodynamics    | $\dot{W}_{comp} = \dot{m}_{comp} c_p (T_{01} - T_{02})$                                                                                                                  |
| Isentropic efficiency          |                                                                                                                                                                          |
|                                | $\eta_{comp} = \frac{h_{02s} - h_{01}}{h_{00} - h_{01}} = \frac{T_{02s} - T_{01}}{T_{00} - T_{01}}$                                                                      |
| Isentropic outlet temperature, |                                                                                                                                                                          |
| constant specific heats        | $T_{02s} = T_{01} \left( \frac{p_{02}}{\gamma} \right)^{\frac{\gamma-1}{\gamma}}$                                                                                        |
| Specific heat ratio            | $(P_{01})$                                                                                                                                                               |
|                                | $\gamma = \frac{c_p}{c_p - R}$                                                                                                                                           |
| Outlet temperature             |                                                                                                                                                                          |
| Heat flows                     | $T_{02} = T_{01} + \frac{T_{01}}{\eta_{comb}} \left\{ \left( \frac{p_{02}}{p_{01}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right\}$ $q_{inlet} = \dot{m}_{comp} h_{01}$ |
|                                | $q_{outlet} = \dot{m}_{comp} h_{02} = \dot{m}_{comp} c_p T_{02}$                                                                                                         |
| Corrected mass flow rate       |                                                                                                                                                                          |
|                                | $\dot{m}_{corr} = \dot{m}_{comp} \frac{\sqrt{T_{01} / T_{ref}}}{n_{corr} / n_{ref}}$                                                                                     |
| Corrected speed                | P01 / Pref                                                                                                                                                               |
|                                | $\omega_{corr} = \frac{\omega}{ T_{res}/T_{res} ^2}$                                                                                                                     |
| Pressure ratio                 | $\sqrt{101}$ / $ref$                                                                                                                                                     |
|                                | $p_r = \frac{p_{01}}{p_{02}}$                                                                                                                                            |

The equations use these variables.

Inlet control volume total pressure  $p_{\rm inlet}$  ,  $p_{01}$ 

| $T_{inlet}$ , $T_{01}$     | Inlet control volume total temperature        |
|----------------------------|-----------------------------------------------|
| $h_{inlet}$ , $h_{01}$     | Inlet control volume total specific enthalpy  |
| $p_{outlot}$ , $p_{02}$    | Outlet control volume total pressure          |
| T                          | Outlet control volume total temperature       |
| h                          | Outlet control volume total specific enthalpy |
| Ŵ                          | Drive shaft power                             |
| $T_{02}$                   | Outlet total temperature                      |
| $h_{02}$                   | Outlet total specific enthalpy                |
| m<br>m                     | Mass flow rate through compressor             |
| q <sub>inlet</sub>         | Inlet heat flow rate                          |
| Q <sub>outlot</sub>        | Outlet heat flow rate                         |
| n                          | Compressor isentropic efficiency              |
| Ilcomp<br>T <sub>02s</sub> | Isentropic outlet total temperature           |
| 628<br>hoo                 | Isentropic outlet total specific enthalpy     |
| R                          | Ideal gas constant                            |
|                            | Specific heat at constant pressure            |
| $c_p$                      | Specific heat ratio                           |
| 1<br>và                    | Corrected mass flow rate                      |
| $\omega$                   | Drive shaft speed                             |
|                            | Corrected drive shaft speed                   |
| $\omega_{corr}$            | -                                             |

| $T_{rof}$            | Lookup table reference temperature        |
|----------------------|-------------------------------------------|
| P c                  | Lookup table reference pressure           |
| ref                  | Compressor drive shaft torque             |
| $	au_{comp}$         | Pressure ratio                            |
| $p_r$                | Compresson officiancy 2 D lookup table    |
| $\eta_{comb,tbl}$    | Compressor eniciency 2-D lookup table     |
| $\dot{m}_{corr,tbl}$ | Corrected mass flow rate 2-D lookup table |
| 0 1 1 1              | Corrected speed breakpoints               |
| ∞corr,opts1          | Pressure ratio breakpoints                |
| $p_{r,bpts2}$        |                                           |

## Ports

## Input

Ds — Drive shaft speed two-way connector port

ShftSpd — Signal containing the drive shaft angular speed,  $\omega$ , in rad/s.

A — Inlet pressure, temperature, enthalpy, mass fractions two-way connector port

Bus containing the inlet control volume:

InPrs — Pressure,  $p_{\mathrm{inlet}}$  , in Pa

InTemp — Temperature, *T<sub>inlet</sub>* , in K

InEnth — Specific enthalpy,  $h_{inlet}$  , in J/kg

### **B** — Outlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the outlet control volume:

- OutPrs Pressure, *p*<sub>outlet</sub>, in Pa
- OutTemp Temperature,  $T_{outlet}$ , in K
- OutEnth Specific enthalpy,  $h_{outlet}$  , in J/kg

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal           | Description                         | Variable                 | Units |  |
|------------------|-------------------------------------|--------------------------|-------|--|
| CmprsOutletTemp  | Temperature exiting the compressor  | T <sub>02</sub>          | K     |  |
| DriveshftPwr     | Drive shaft power                   | <i>W</i> <sub>comp</sub> | W     |  |
| DriveshftTrq     | Drive shaft torque                  | $	au_{comp}$             | N.m   |  |
| CmprsMassFlw     | Mass flow rate through compressor   | $\dot{m}_{comp}$         | kg/s  |  |
| PrsRatio         | Pressure ratio                      | p <sub>r</sub>           | N/A   |  |
| DriveshftCorrSpd | Corrected drive shaft speed         | ω <sub>corr</sub>        | rad/s |  |
| CmprsEff         | Compressor isentropic<br>efficiency | $\eta_{comp}$            | N/A   |  |
| CorrMassFlw      | Corrected mass flow rate            | <i>m</i> <sub>corr</sub> | kg/s  |  |

### Ds — Drive shaft torque

two-way connector port

Trq — Signal containing the drive shaft torque,  $\tau_{comp}$ , in N.m.

### A — Inlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- MassFlwRate Mass flow rate through inlet,  $\dot{m}_{comp}$ , in kg/s
- HeatFlwRate Inlet heat flow rate,  $q_{inlet}$ , in J/s
- Temp Inlet temperature, in K
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

### **B** — Outlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

MassFlwRate — Outlet mass flow rate,  $\dot{m}_{comp}$ , in kg/s

- HeatFlwRate Outlet heat flow rate,  $q_{outlet}$ , in J/s
- Temp Outlet temperature, in K
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

## **Parameters**

#### **Performance Tables**

**Corrected mass flow rate table, mdot\_corr\_tbl — 2-D lookup table** array

Corrected mass flow rate 2-D lookup table,  $\dot{m}_{corr,tbl}$ , in kg/s.

# Efficiency table, eta\_comp\_tbl — 2-D lookup table array

Efficiency 2-D lookup table,  $\eta_{comb,tbl}$ .

Corrected speed breakpoints, w\_corr\_bpts1 — Breakpoints
array

Corrected drive shaft speed breakpoints,  $\omega_{corr,bpts1}$ , in rad/s.

Pressure ratio breakpoints, Pr\_bpts2 — Breakpoints
array

Pressure ratio breakpoints,  $p_{r,bpts2}$ .

**Reference temperature, T\_ref — Lookup table** array

Lookup table reference temperature,  $T_{ref}$ , in K.

**Reference pressure, P\_ref — Lookup table** array

Lookup table reference pressure,  $P_{ref}$ , in Pa.

#### **Gas Properties**

Ideal gas constant, R - Constant
scalar

Ideal gas constant, R, in J/(kg\*K).

Specific heat at constant pressure, cp — Specific heat
scalar

Specific heat at constant pressure,  $c_p$ , in J/(kg\*K).

### References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

## See Also

Boost Drive Shaft | Turbine

Introduced in R2017a

## **Control Volume System**

Constant volume open thermodynamic system with heat transfer Library: Propulsion / Combustion Engine Components / Fundamental Flow



## Description

The Control Volume System block models a constant volume open thermodynamic system with heat transfer. The block uses the conservation of mass and energy, assuming an ideal gas, to determine the pressure and temperature. The block implements an automotivespecific Constant Volume Pneumatic Chamber block that includes thermal effects related to the under hood of passenger vehicles. You can specify heat transfer models:

- Constant
- External input
- External wall convection

You can use the Control Volume System block to represent engine components that contain volume, including pipes and manifolds.

## Thermodynamics

The Control Volume System block implements a constant volume chamber containing an ideal gas. To determine the rate changes in temperature and pressure, the block uses the continuity equation and the first law of thermodynamics.

$$\begin{split} \frac{dT_{vol}}{dt} &= \frac{RT_{vol}}{c_v V_{ch} P_{vol}} \left( \sum \left( q_i - T_{vol} c_v \dot{m}_i \right) - Q_{wall} \right) \\ \frac{dP_{vol}}{dt} &= \frac{P_{vol}}{T_{vol}} \frac{dT_{vol}}{dt} + \frac{RT_{vol}}{V_{ch}} \sum \dot{m}_i \end{split}$$

The block uses this equation for the volume-specific enthalpy.

 $h_{vol} = c_p T_{vol}$ 

The equations use these variables.

| $\dot{m_i}$ | Mass flow rate at port           |
|-------------|----------------------------------|
| $q_i$       | Heat flow rate at port           |
| $V_{ch}$    | Chamber volume                   |
| $P_{vol}$   | Absolute pressure in the chamber |
| R           | Ideal gas constant               |
| $C_{v}$     | Specific heat at constant volume |
| $T_{vol}$   | Absolute gas temperature         |
| $Q_{wall}$  | Wall heat transfer rate          |
| $h_{vol}$   | Volume-specific enthalpy         |
| $C_p$       | Specific heat capacity           |
|             |                                  |

### **Mass Fractions**

The Control Volume Source block is part of a flow network. Blocks in the network determine the mass fractions that the block will track during simulation. The block can track these mass fractions:

- 02 Oxygen
- N2 Nitrogen
- UnburnedFuel Unburned fuel
- CO2 Carbon dioxide
- H20 Water
- C0 Carbon monoxide
- NO Nitric oxide
- N02 Nitrogen dioxide
- PM Particulate matter
- Air Air
- BurnedGas Burned gas

Using the conservation of mass for each gas constituent, this equation determines the rate change:

$$\frac{dy_{vol,j}}{dt} = \frac{RT_{vol}}{P_{vol}V_{ch}} \left( \sum \dot{m}_i y_{i,j} + y_{vol,j} \sum \dot{m}_i \right)$$

The equations use these variables.

| $V_{ch}$              | Chamber volume                                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|
| $P_{vol}$             | Absolute pressure in the chamber                                                                                |
| R                     | Ideal gas constant                                                                                              |
| $T_{vol}$             | Absolute gas temperature                                                                                        |
| $\mathcal{Y}_{i,j}$   | I-th port mass fraction for $j$ = $O_2,N_2,$ unburned fuel, $CO_2,H_2O,CO,NO,NO_2,PM,$ air, and burned gas      |
| $\mathcal{Y}_{vol,j}$ | Control volume mass fraction for $j$ = $O_2,N_2,$ unburned fuel, $CO_2,H_2O,CO,NO,NO_2,PM,$ air, and burned gas |
| $\dot{m_i}$           | Mass flow rate for $i$ = $O_2,N_2,$ unburned fuel, $CO_2,H_2O,CO,NO,NO_2,PM,$ air, and burned gas               |
|                       |                                                                                                                 |

### **External Wall Convection Heat Transfer Model**

To calculate the heat transfer, you can configure the Control Volume Source block to calculate the heat transfer across the wall of the control volume.



The block implements these equations to calculate the heat transfer,  $Q_1$ , from the internal control volume gas to the internal wall depth,  $D_{int \ cond}$ .

$$Q_1 = Q_{1,conv} = Q_{1,cond}$$

$$Q_{1,conv} = h_{int} (x_{int}) \bullet A_{int\_conv} \bullet (T_{int\_gas} - T_{w\_int})$$

$$Q_{1,cond} = k_{int} \bullet \frac{A_{int\_cond}}{D_{int\_cond}} \bullet \left(T_{w\_int} - T_{mass}\right)$$

The block implements these equations to calculate the heat transfer,  $Q_2$ , from the external wall depth,  $D_{ext \ cond}$  to the external gas.

$$\begin{aligned} Q_{2} &= Q_{2,conv} = h_{ext} \left( x_{ext} \right) \bullet A_{ext\_conv} \bullet \left( T_{w\_ext} - T_{ext\_gas} \right) \\ Q_{2,cond} &= k_{ext} \bullet \frac{A_{ext\_cond}}{D_{ext\_cond}} \bullet \left( T_{mass} - T_{w\_ext} \right) \end{aligned}$$

This equation expresses the heat stored in the thermal mass.

$$\frac{dT_{mass}}{dt} = \frac{Q_1 - Q_2}{c_{p_{wall}} m_{wall}}$$

The block determines the interior convection heat transfer coefficient using a lookup table that is a function of the average mass flow rate.

$$\dot{m}_{int\_gas} = \frac{1}{2} \sum |\dot{m}_i|$$

The equations use these variables.

| $Q_1$                   | Heat flow from the internal gas to a specified wall depth                                                                                            |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Q_{1,conv}$            | Heat flow convection from the internal gas to the internal wall                                                                                      |
| $Q_{1,cond}$            | Conduction heat transfer rate                                                                                                                        |
| $Q_2$                   | Heat transfer rate                                                                                                                                   |
| $Q_{2,conv}$            | Convection heat transfer                                                                                                                             |
| $Q_{2,cond}$            | Heat flow conduction from the external middle portion of the wall to the external wall $% \left[ {{\left[ {{{\rm{m}}} \right]}_{{\rm{m}}}}} \right]$ |
| <i>Q<sub>mass</sub></i> | Heat stored in thermal mass                                                                                                                          |
|                         |                                                                                                                                                      |

| $h_{int}$               | Internal convection heat transfer coefficient   |
|-------------------------|-------------------------------------------------|
| <i>x</i> <sub>int</sub> | Internal mass flow rate breakpoints             |
| $A_{int\_conv}$         | Internal flow convection area                   |
| $T_{int\_gas}$          | Temperature of the gas inside the chamber       |
| $T_{w\_int}$            | Temperature of the inside wall of the chamber   |
| k <sub>int</sub>        | Internal wall thermal conductivity              |
| $A_{int\_cond}$         | Internal conduction area                        |
| $D_{int\_cond}$         | Internal wall thickness                         |
| h <sub>ext</sub>        | External convection heat transfer coefficient   |
| X <sub>ext</sub>        | External velocity breakpoints                   |
| $A_{ext\_conv}$         | External convection area                        |
| $T_{ext\_gas}$          | External gas temperature                        |
| $T_{w_ext}$             | Temperature of the external wall of the chamber |
| k <sub>ext</sub>        | External wall thermal conductivity              |
| $A_{ext\_cond}$         | External conduction area                        |
| $D_{ext\_cond}$         | External wall thickness                         |
| T <sub>mass</sub>       | Temperature of the thermal mass                 |
| $C_{p_wall}$            | Wall heat capacity                              |
| m <sub>wall</sub>       | Thermal mass                                    |
| $Flw_{spd}$             | External flow velocity                          |
|                         | Average internal mass flow rate                 |
| $m_{int\_gas}$          |                                                 |

## Ports

### Input

# C — Inlet mass flow rate, heat flow rate, mass fractions two-way connector port

### Bus containing:

- MassFlw Mass flow rate through inlet, in kg/s
- HeatFlw Inlet heat flow rate, in J/s
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

#### Dependencies

To create input ports, specify the Number of inlet ports parameter.

### HeatTrnsfrRate — Heat transfer

scalar

External heat transfer input to control volume,  $q_{he}$ , in Kg/s.

#### Dependencies

To create this port, select External input for the Heat transfer model parameter.

## ExtnlFlwVel — External flow velocity scalar

External flow velocity, *Flw*<sub>spd</sub>, in m/s.

To create this port, select External wall convection for the **Heat transfer model** parameter.

### ExtnlTemp — Ambient temperature, K

scalar

### Dependencies

To create this port, select External wall convection for the **Heat transfer model** parameter.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal |         |                        | Description                      | Units |
|--------|---------|------------------------|----------------------------------|-------|
| Vol    | Prs     |                        | Volume pressure                  | Pa    |
|        | Temp    |                        | Volume temperature               | K     |
|        | Enth    |                        | Volume specific<br>enthalpy      | J/kg  |
|        | Species | 02MassFrac             | Oxygen mass fraction             | NA    |
|        |         | N2MassFrac             | Nitrogen mass<br>fraction        | NA    |
|        |         | UnbrndFuelMassFr<br>ac | Unburned gas mass<br>fraction    | NA    |
|        |         | CO2MassFrac            | Carbon dioxide mass fraction     | NA    |
|        |         | H20MassFrac            | Water mass fraction              | NA    |
|        |         | COMassFrac             | Carbon monoxide<br>mass fraction | NA    |
|        |         | NOMassFrac             | Nitric oxide mass<br>fraction    | NA    |

| Signal     |                  |                 | Description                                           | Units |
|------------|------------------|-----------------|-------------------------------------------------------|-------|
|            |                  | NO2MassFrac     | Nitrogen dioxide<br>mass fraction                     | NA    |
|            |                  | NOxMassFrac     | Nitric oxide and<br>nitrogen dioxide<br>mass fraction | NA    |
|            |                  | PmMassFrac      | Particulate matter<br>mass fraction                   | NA    |
|            |                  | AirMassFrac     | Air mass fraction                                     | NA    |
|            |                  | BrndGasMassFrac | Burned gas mass fraction                              | NA    |
| HeatTrnsfr | r HeatTrnsfrRate |                 | Wall heat transfer rate                               | J/s   |
|            | MassFlw          |                 | Average internal<br>mass flow rate                    | kg/s  |
|            | IntrnTemp        |                 | Temperature of gas<br>inside chamber                  | K     |

### C — Outlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the outlet control volume:

- Prs Chamber pressure, in Pa
- Temp Gas temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water

- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

To create outlet ports, specify the Number of outlet ports parameter.

## **Parameters**

### **Block Options**

**Number of inlet ports — Number of ports** 1 (default) | 0 | 2 | 3 | 4

Number of inlet ports.

### Dependencies

To create inlet ports, specify the number.

### Number of outlet ports — Number of ports

1 (default) | 0 | 2 | 3 | 4

Number of outlet ports.

### Dependencies

To create outlet ports, specify the number.

## Heat transfer model — Select model Constant (default) | External input | External wall convection

### Dependencies

Selecting Constant or External wall convection enables the **Heat Transfer** parameters.

```
Image type — Icon color
```

Cold (default) | Hot

Select color for block icon:

- Cold for blue
- Hot for red

General

Chamber volume, Vch — Volume scalar

Chamber volume,  $V_{ch}$ , in m<sup>3</sup>.

## Initial chamber pressure, Pinit - Pressure scalar

Initial chamber pressure,  $P_{vol}$ , in Pa.

## Initial chamber temperature, Tinit - Temperature scalar

Initial chamber temperature,  $T_{vol}$ , in K.

## Ideal gas constant, R — Ideal gas constant

scalar

Ideal gas constant, *R*, in J/(kg\*K).

Specific heat capacity, cp — Specific heat
scalar

Specific heat capacity,  $c_p$ , in J/(kg\*K).

**Heat Transfer** 

Heat transfer rate, q\_he - Rate
scalar

Constant heat transfer rate,  $q_{he}$ , in J/s.

To enable this parameter, select Constant for the Heat transfer model parameter.

# External convection heat transfer coefficient, ext\_tbl — Manifold external air

vector

External convection heat transfer coefficient,  $h_{ext}$ , in W/(m<sup>2</sup>K).

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

External velocity breakpoints, ext\_bpts — Manifold external air linspace(0,180,4) (default)

External velocity breakpoints,  $x_{ext}$ , in m/s.

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

## External convection area, Aext\_conv — Manifold external air scalar

External convection area,  $A_{ext conv}$ , in m<sup>2</sup>.

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

### Thermal mass, m\_wall — Manifold wall general

scalar

Thermal mass,  $m_{wall}$ , in kg.

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

## Wall heat capacity, cp\_wall — Manifold wall general scalar

Wall heat capacity,  $c_{p wall}$ , in J/(kg\*K).

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

## Initial mass temperature, Tmass — Manifold wall general scalar

Initial mass temperature,  $T_{mass}$ , in K.

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

## External wall thickness, Dext\_cond — Manifold wall external scalar

External wall thickness, *D<sub>ext cond</sub>*, in m.

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

## External conduction area, Aext\_cond — Manifold wall external scalar

External conduction area,  $A_{ext cond}$ , in m<sup>2</sup>.

#### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

# External wall thermal conductivity, kint — Manifold wall external scalar

External wall thermal conductivity,  $k_{ext}$ , in W/(m\*K).

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

### Internal wall thickness, Dint\_cond — Manifold wall internal

scalar

Internal wall thickness, *D*<sub>int cond</sub>, in m.

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

## Internal conduction area, Aint\_cond — Manifold wall internal scalar

Internal conduction area,  $A_{int cond}$ , in m<sup>2</sup>.

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

## Internal wall thermal conductivity, kint — Manifold wall internal scalar

Internal wall thermal conductivity,  $k_{int}$ , in W/(m\*K).

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

# Internal convection heat transfer coefficient, int\_tbl — Manifold internal air

vector

Internal convection heat transfer coefficient,  $h_{int}$ , in W/(m<sup>2</sup>K).

#### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

# Internal mass flow rate breakpoints, int\_bpts — Manifold internal air vector

Internal velocity breakpoints,  $x_{int}$ , in kg/s.

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

Internal flow convection area, Aint\_conv — Manifold internal air
scalar

Internal convection area,  $A_{int conv}$ , in m<sup>2</sup>.

### Dependencies

To enable this parameter, select External wall convection for the **Heat transfer model** parameter.

### References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

## See Also

Constant Volume Pneumatic Chamber | Two-Way Connection | Flow Restriction | Heat Exchanger

### Introduced in R2017a
# **Interior PMSM**

Three-phase interior permanent magnet synchronous motor with sinusoidal back electromotive force

Library: Propulsion / Electric Motors



## Description

The Interior PMSM block implements a three-phase interior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

### **Motor Construction**

This figure shows the motor construction with a single pole pair on the rotor.



The rotor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with rotor angle.

For the axes convention, the *a*-phase and permanent magnet fluxes are aligned when rotor angle  $\theta_r$  is zero.

### **Three-Phase Sinusoidal Model Electrical System**

The block implements these equations, expressed in the rotor flux reference frame (dq frame). All quantities in the rotor reference frame are referred to the stator.

$$\begin{split} & \omega_e = P\omega_m \\ & \frac{d}{dt}i_d = \frac{1}{L_d}v_d - \frac{R}{L_d}i_d + \frac{L_q}{L_d}P\omega_m i_q \\ & \frac{d}{dt}i_q = \frac{1}{L_q}v_q - \frac{R}{L_q}i_q - \frac{L_d}{L_q}P\omega_m i_d - \frac{\lambda_{pm}P\omega_m}{L_q} \\ & T_e = 1.5P[\lambda_{pm}i_q + (L_d - L_q)i_di_q] \end{split}$$

The  $L_q$  and  $L_d$  inductances represent the relation between the phase inductance and the rotor position due to the saliency of the rotor.

The equations use these variables.

| $L_q$ , $L_d$                   | q- and d-axis inductances                |
|---------------------------------|------------------------------------------|
| R                               | Resistance of the stator windings        |
| i <sub>q</sub> , i <sub>d</sub> | q- and d-axis currents                   |
| $v_q$ , $v_d$                   | q- and d-axis voltages                   |
| $\omega_m$                      | Angular mechanical velocity of the rotor |
| $\omega_e$                      | Angular electrical velocity of the rotor |
| $\lambda_{pm}$                  | Permanent magnet flux linkage            |
| Р                               | Number of pole pairs                     |
| $T_e$                           | Electromagnetic torque                   |
| $\Theta_e$                      | Electrical angle                         |
|                                 |                                          |

### **Mechanical System**

The rotor angular velocity is given by:

$$\begin{split} &\frac{d}{dt}\omega_m = \frac{1}{J} \big(T_e - T_f - F\omega_m - T_m \big) \\ &\frac{d\theta_m}{dt} = \omega_m \end{split}$$

The equations use these variables.

| J          | Combined inertia of rotor and load                        |
|------------|-----------------------------------------------------------|
| F          | $Combined \ viscous \ friction \ of \ rotor \ and \ load$ |
| $	heta_m$  | Rotor mechanical angular position                         |
| $T_m$      | Rotor shaft torque                                        |
| $T_e$      | Electromagnetic torque                                    |
| $T_f$      | Rotor shaft static friction torque                        |
| $\omega_m$ | Angular mechanical velocity of the rotor                  |

# Ports

### Input

#### LdTrq — Rotor shaft torque

scalar

Rotor shaft input torque,  $T_m$ , in N.m.

#### Dependencies

To create this port, select Torque for the **Port Configuration** parameter.

## Spd — Rotor shaft speed

scalar

Angular velocity of the rotor,  $\omega_{m}\text{, in rad/s.}$ 

#### Dependencies

To create this port, select Speed for the Port Configuration parameter.

#### PhaseVolt — Stator terminal voltages

vector

Stator terminal voltages,  $V_a$ ,  $V_b$ , and  $V_c$ , in V.

#### Dependencies

To create this port, select Speed or Torque for the Port Configuration parameter.

### Output

#### Info — Bus signal

bus

The bus signal contains these block calculations.

| Signal   | Description                              | Variable       | Units |
|----------|------------------------------------------|----------------|-------|
| IaStator | Stator phase current A                   | i <sub>a</sub> | А     |
| IbStator | Stator phase current B                   | i <sub>b</sub> | А     |
| IcStator | Stator phase current C                   | i <sub>c</sub> | А     |
| IdSync   | Direct axis current                      | i <sub>d</sub> | А     |
| IqSync   | Quadrature axis current                  | i <sub>q</sub> | А     |
| VdSync   | Direct axis voltage                      | V <sub>d</sub> | V     |
| VqSync   | Quadrature axis voltage                  | v <sub>q</sub> | V     |
| MtrSpd   | Angular mechanical velocity of the rotor | $\omega_m$     | rad/s |
| MtrPos   | Rotor mechanical<br>angular position     | $\theta_m$     | rad   |
| MtrTrq   | Electromagnetic torque                   | T <sub>e</sub> | N.m   |

## **Parameters**

#### **Port Configuration — Select port configuration**

Torque (default) | Speed

This table summarizes the port configurations.

| Port Configuration | Creates Ports |
|--------------------|---------------|
| Torque             | LdTrq         |
|                    | PhaseVolt     |
|                    | Info          |
| Speed              | Spd           |
|                    | PhaseVolt     |
|                    | Info          |

# Stator phase resistance, Rs — Resistance scalar

Stator phase resistance,  $R_s$ , in ohm.

# **D** and **Q** axis inductances, Ldq — Inductance vector

D and Q axis inductances,  $L_d$ ,  $L_a$ , in H.

# Permanent magnet flux, lambda\_pm — Flux scalar

Permanent magnet flux linkage,  $\lambda_{pm}$ , in Wb.

# Number of pole pairs, P — Pole pairs scalar

Motor pole pairs, *P*.

# Initial dq current, idq0 - Current vector

Initial q- and d-axis currents,  $i_q$ ,  $i_d$ , in A.

# Initial mechanical position, theta\_init — Angle scalar

Initial rotor angular position,  $\theta_{m0}$ , in rad.

# Initial mechanical speed, omega\_init — Speed scalar

Initial angular velocity of the rotor,  $\omega_{m0}$ , in rad/s.

#### Dependencies

To enable this parameter, select the Torque configuration parameter.

# Physical inertia, viscous damping, and static friction, mechanical — Inertia, damping, friction

vector

Mechanical properties of the rotor:

- Inertia, J, in kgm<sup>2</sup>
- Viscous damping, *F*, in N.m/(rad/s)
- Static friction, *T<sub>f</sub>*, in N.m

#### Dependencies

To enable this parameter, select the Torque configuration parameter.

### References

[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.

[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

## See Also

Flux-Based PMSM | Induction Motor | Interior PM Controller | Interior PMSM | Mapped Motor | Surface Mount PMSM

Introduced in R2017a

# **Interior PM Controller**

Torque-based, field-oriented controller for an internal permanent magnet synchronous motor

Library: Propulsion / Electric Motor Controllers



# Description

The Interior PM Controller block implements a torque-based, field-oriented controller for an internal permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Interior PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.



The block implements equations that use these variables.

| Rotor speed                                  |
|----------------------------------------------|
| Rotor speed command                          |
| Torque command                               |
| d-axis current                               |
| d-axis current command                       |
| q-axis current                               |
| q-axis current command                       |
| d-axis voltage                               |
| d-axis voltage command                       |
| q-axis voltage                               |
| q-axis voltage command                       |
| Stator phase a, b, $\ensuremath{c}$ voltages |
| Stator phase a, b, c currents                |
|                                              |

## **Speed Controller**

To implement the speed controller, select the **Control Type** parameter **Speed Control**. If you select the **Control Type** parameter **Torque Control**, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Interior PM Controller block.



The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the **Speed Controller** tab:

- To make the speed-command lag time negligible, specify a **Bandwidth of the state filter** parameter.
- To calculate a **Speed time constant, Ksf** gain based on the state filter bandwidth, select **Calculate Speed Regulator Gains**.

The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$$

The equations use these variables.

 $EV_{sf}$  Bandwidth of the speed command filter

- $T_{sm}$  Motion controller sample time
- $K_{sf}$  Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the **Speed Controller** tab, select **Calculate Speed Regulator Gains** to calculate:

- Proportional gain, ba
- Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value on the **Motor Parameters** tab.

| Calculation                                     | Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Discrete forms of<br>characteristic<br>equation | $z^{3} + \frac{\left(-3J_{p} + T_{s}b_{a} + T_{s}^{2}K_{sa} + T_{s}^{3}K_{isa}\right)}{J_{p}}z^{2} + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{\left(-3J_{p} - 2T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{\left(-3J_{p} - 2T_{s}^{2}K_{sa}\right)}$ | $\frac{-J_p + T_s b_a}{J_p}$                |
|                                                 | $(z - p_1)(z - p_2)(z - p_3) = z^3 + (p_1 + p_2 + p_3)z^2 + (p_1p_2 + p_2p_3 + p_13)z^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p_{1}^{2} - p_{1}^{2} p_{2}^{2} p_{3}^{2}$ |
| Speed regulator<br>proportional gain            | $b_{a} = \frac{J_{p} - J_{p} p_{1} p_{2} p_{3}}{T_{sm}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |
| Speed regulator<br>integral gain                | $K_{sa} = \frac{J_p (p_1 p_2 + p_2 p_3 + p_3 p_1) - 3J_p + 2b_a T_{sm}}{T_{sm}^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |
| Speed regulator<br>double integral gain         | $K_{isa} = \frac{-J_p \left( p_1 + p_2 + p_3 \right) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |

The gains for the state feedback are calculated using these equations.

The equations use these variables.

- *P* Motor pole pairs
- *b<sub>a</sub>* Speed regulator proportional gain
- $K_{sa}$  Speed regulator integral gain

| K <sub>isa</sub> | Speed regulator double integral gain |
|------------------|--------------------------------------|
| $J_p$            | Motor inertia                        |
| $T_{sm}$         | Motion controller sample time        |

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting **Calculate Speed Regulator Gains** on the **Speed Controller** tab updates the inertia, viscous damping, and static friction with the **Physical inertia, viscous damping, static friction** parameter values on the **Motor Parameters** tab.

The feedforward torque command uses this equation.

$$T_{cmd_{-}ff} = J_p \dot{\omega}_m + F_v \omega_m + F_s \frac{\omega_m}{|\omega_m|}$$

where:

| $J_p$               | Motor inertia                    |
|---------------------|----------------------------------|
| T <sub>cmd_ff</sub> | Torque command feedforward       |
| $F_s$               | Static friction torque constant  |
| $F_{v}$             | Viscous friction torque constant |
| $F_s$               | Static friction torque constant  |
| $\omega_m$          | Rotor speed                      |

### **Torque Determination**

The block uses a maximum torque per ampere (MTPA) trajectory to calculate the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.

| Calculation                                                 | Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrical base speed<br>transition into field<br>weakening | $\omega_{base} = \frac{v_{max}}{\sqrt{1-v_{max}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| d-axis voltage                                              | $v_d = -\omega_e L_q i_{q_{max}}^2 + (L_d i_d + \lambda_{pm})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| q-axis voltage                                              | $v_q = \omega_e (L_d i_{d\_max} + \lambda_{pm})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Maximum phase current                                       | $i_{max}^2 = i_{d\_max}^2 + i_{q\_max}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Maximum line to neutral voltage                             | $v_{max} = \frac{v_{bus}}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| d-axis phase current MTPA<br>table                          | <b>V</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                             | $I_m = \frac{2T_{max}}{3P\lambda_{pm}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| q-axis phase current MTPA<br>table                          | $ \begin{array}{c c} i_{d\_mtpa} = \frac{\lambda_{pm}}{4(\frac{L_q - L_d}{2})} \\ i_{q\_mtpa} = \sqrt{I_m^2 - (i_mtpa)} \end{array} \\ \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \lambda_{pm}^2 \\ \hline 16(L_q - L_d)^2 \\ \hline 16(L_q - L_d)^2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \lambda_{pm}^2 \\ \hline 16(L_q - L_d)^2 \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \lambda_{pm}^2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c c} \lambda_{pm} \\ \hline \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array}  \\ \begin{array}{c c} \lambda_{pm} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} |
| Torque MTPA breakpoints                                     | $T_{mtpa} = \frac{3}{2} P \left( \lambda_{pm} i_q + \left( L_d - L_q \right) i_d i_q \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Calculation                                              | Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field weakening, using the<br>speed-based voltage limits | $ (L_q i_q)^2 + (L_d i_d + \lambda_{pm})^2 \leq \frac{v_{max}^2}{\omega_e^2} $ $ i_q = \sqrt{i_{max}^2 - i_d^2} $ $ (L^2 - L^2)^{1/2} = 0^2 - L_q i_q + L^2 \cdot 2 = \frac{v_{max}^2}{\omega_e^2} $                                                                                                                                                                                                                                                                                                                                   |
|                                                          | $ \begin{pmatrix} L_{d}^{2} - L_{q}^{2} \end{pmatrix} i_{d}^{2} + 2\lambda_{pm} L_{d} i_{d} + \lambda_{pm} + L_{q}^{2} i_{max}^{2} - \frac{max}{\omega_{e}^{2}} = 0 $ $ i_{dfw} = \frac{-\lambda_{pm} L_{d} + \sqrt{\left(\lambda_{pm} L_{d}\right)^{2} - \left(L_{d}^{2} - L_{q}^{2}\right)\left(\lambda_{pm}^{2} + L_{q}^{2} i_{max}^{2} - \frac{v_{max}^{2}}{\omega_{e}^{2}}\right)}{\left(L_{d}^{2} - L_{q}^{2}\right)} $ $ T_{fw} = \frac{3}{2} P\left(\lambda_{pm} i_{qfw} + \left(L_{d} - L_{q}\right) i_{dfw} i_{qfw}\right) $ |

| Calculation     | Equations                                                                                                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current command | $If \omega_e  \le \omega_{base}$                                                                                                                                                          |
|                 | $ \begin{array}{l} i_{dref} = \!\! i_{d_{mtpa}}(T_{ref}) \\ \\ \texttt{Else} \qquad i_{qref} = \!\! i_{q_{mtpa}}(T_{ref}) \end{array} \end{array} $                                       |
|                 | $i_{dfiv} = \max(i_{dfiv}, -i_{max})$                                                                                                                                                     |
|                 | $ \begin{split} & \underset{\mathbf{I} \neq}{\overset{i_{qfw}}{\underset{fw}{=}}} \overset{=}{\underset{fw}{\overset{-}}} \overset{-i_{d}^{2}}{\underset{ref}{\overset{-}}} \end{split} $ |
|                 | $i_{dref}$ = $i_{d_{fiv}}$<br>Else $i_{qref}$ = $i_{q_{fiv}}$                                                                                                                             |
|                 | $i_{dref} = i_{d_{fw}}$                                                                                                                                                                   |
|                 | End $i_{qref} = \frac{T_{ref}}{\frac{3}{2}P(\lambda_{pm} + (L_d - L_q)i_{dfw})}$                                                                                                          |

The equations use these variables.

| <i>i<sub>max</sub></i> | Maximum phase current           |
|------------------------|---------------------------------|
| i <sub>d</sub>         | d-axis current                  |
| i <sub>q</sub>         | q-axis current                  |
| i <sub>d_max</sub>     | Maximum d-axis phase current    |
| i <sub>q_max</sub>     | Maximum q-axis phase current    |
| i <sub>d_mtpa</sub>    | d-axis phase current MTPA table |
| $i_{q\_mtpa}$          | q-axis phase current MTPA table |
| $I_m$                  | Estimated maximum current       |
| i <sub>dfw</sub>       | d-axis field weakening current  |
|                        |                                 |

| i <sub>qfw</sub>       | q-axis field weakening current  |
|------------------------|---------------------------------|
| $\omega_e$             | Rotor electrical speed          |
| $\lambda_{pm}$         | Permanent magnet flux linkage   |
| $v_d$                  | d-axis voltage                  |
| $v_q$                  | q-axis voltage                  |
| <i>v<sub>max</sub></i> | Maximum line to neutral voltage |
| $v_{bus}$              | DC bus voltage                  |
| $L_d$                  | d-axis winding inductance       |
| $L_q$                  | q-axis winding inductance       |
| Р                      | Motor pole pairs                |
| $T_{fw}$               | Field weakening torque          |
| $T_{mtpa}$             | Torque MTPA breakpoints         |

## **Current Regulators**

The block regulates the current with an anti-windup feature. Classic proportionalintegrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- d-axis and q-axis current cross-coupling
- Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of  $EV_{current}$ .

The block implements these equations.

| Calculation                                 | Equations                                                                                |
|---------------------------------------------|------------------------------------------------------------------------------------------|
| Motor voltage, in the rotor reference frame |                                                                                          |
|                                             | $L_d \frac{di_d}{dt} = v_d - R_s i_d + p\omega_m L_q i_q$ $di$                           |
|                                             | $L_d \frac{\omega_q}{dt} = v_q - R_s i_q - p \omega_m L_d i_d - p \omega_m \lambda_{pm}$ |

| Calculation             | Equations                            |
|-------------------------|--------------------------------------|
| Current regulator gains |                                      |
|                         |                                      |
|                         | $\omega_b = 2\pi E V_{current}$      |
|                         | $K_{p\_d} = L_d \omega_b$            |
|                         | $K_{p_q} = L_q \omega_b$             |
| Transfer functions      | $K_i = R_s \omega_b$                 |
|                         |                                      |
|                         | $\frac{i_d}{2} = \frac{\omega_b}{2}$ |
|                         | $i_{dref}$ $s + \omega_b$            |
|                         | $i_a - \omega_b$                     |

The equations use these variables.  $s + \omega_b$ 

| $EV_{current}$ | Current regulator bandwidth     |
|----------------|---------------------------------|
| i <sub>d</sub> | d-axis current                  |
| i <sub>q</sub> | q-axis current                  |
| $K_{p\_d}$     | Current regulator d-axis gain   |
| $K_{p\_q}$     | Current regulator q-axis gain   |
| $L_d$          | d-axis winding inductance       |
| $L_q$          | q-axis winding inductance       |
| $R_s$          | Stator phase winding resistance |
| $\omega_m$     | Rotor speed                     |
| $v_d$          | d-axis voltage                  |
| $v_q$          | q-axis voltage                  |
| $\lambda_{pm}$ | Permanent magnet flux linkage   |
| Р              | Motor pole pairs                |

### Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase  $(\alpha, \beta)$  quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$
$$\frac{d\theta_e}{dt} = \omega_e$$

| Transform      | Description                                                                                                                                    | Equations                                                                                                                                                                                                         |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clarke         | Converts balanced three-phase quantities $(a, b)$ into balanced two-<br>phase quadrature quantities $(\alpha, \beta)$ .                        | $x_{\alpha} = \frac{2}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $\sqrt{3} = \sqrt{3} = \sqrt{3} = -\frac{1}{3}x_{c}$                                                                                        |
| Park           | Converts balanced two-phase<br>orthogonal stationary quantities<br>$(\alpha, \beta)$ into an orthogonal rotating<br>reference frame $(d, q)$ . | $x_{\beta} = \frac{1}{2} x_{b} - \frac{1}{2} x_{c}$ $x_{d} = x_{\alpha} \cos \theta_{e} + x_{\beta} \sin \theta_{e}$ $x_{q} = -x_{\alpha} \sin \theta_{e} + x_{\beta} \cos \theta_{e}$                            |
| Inverse Clarke | Converts balanced two-phase quadrature quantities $(\alpha, \beta)$ into balanced three-phase quantities $(a, b)$ .                            | $x_a = x_a$<br>$x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$                                                                                                                                           |
| Inverse Park   | Converts an orthogonal rotating<br>reference frame $(d, q)$ into<br>balanced two-phase orthogonal<br>stationary quantities $(\alpha, \beta)$ . | $\begin{aligned} x_{\alpha}^{c} &= \frac{1}{x_{\alpha}} x_{\alpha} \frac{\sqrt{3}}{\theta_{e} 2 x_{q}} x_{q}^{\beta} \sin \theta_{e} \\ x_{\beta} &= x_{d} \sin \theta_{e} + x_{q} \cos \theta_{e} \end{aligned}$ |

The transforms use these variables.

- $\omega_m$  Rotor speed
- *P* Motor pole pairs
- $\omega_e$  Rotor electrical speed
- $\Theta_e$  Rotor electrical angle
- *x* Phase current or voltage

### Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

| Load power                                         | $Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$                |
|----------------------------------------------------|---------------------------------------------------------|
| Source power                                       | $Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$                     |
| DC bus current                                     | $i_{bus} = \frac{Src_{Pwr}}{v_{bus}}$                   |
| Estimated rotor torque                             | $MtrTrq_{est} = 1.5P[\lambda i_q + (L_d - L_q)i_d i_q]$ |
| Power loss for single efficiency source to load    | $Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$     |
| Power loss for single efficiency<br>load to source | $Pwr_{Loss} = \frac{100 - Eff}{100} \cdot  Ld_{Pwr} $   |
| Power loss for tabulated efficiency                | $Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$                |

The equations use these variables.

| $v_a$ , $v_b$ , $v_c$ | Stator phase a, b, c voltages |
|-----------------------|-------------------------------|
| $v_{bus}$             | Estimated DC bus voltage      |
| $i_a$ , $i_b$ , $i_c$ | Stator phase a, b, c currents |
| i <sub>bus</sub>      | Estimated DC bus current      |
| Eff                   | Overall inverter efficiency   |
| $\omega_m$            | Rotor mechanical speed        |
| $L_q$                 | q-axis winding inductance     |
| $L_d$                 | d-axis winding inductance     |
| i <sub>q</sub>        | q-axis current                |
|                       |                               |

| i <sub>d</sub> | d-axis current                |
|----------------|-------------------------------|
| λ              | Permanent magnet flux linkage |
| Р              | Motor pole pairs              |

### **Electrical Losses**

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

| Setting                          | Block Implementation                                                                                                                                                                                                                        |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for inverter efficiency.                                                                                                                                                                  |  |
| Tabulated loss data              | Electrical loss calculated as a function of motor speeds and load torques.                                                                                                                                                                  |  |
| Tabulated efficiency<br>data     | <ul> <li>Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.</li> <li>Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.</li> </ul> |  |
|                                  | <ul> <li>Ignores efficiency values you provide for zero speed or<br/>zero torque. Losses are assumed zero when either<br/>torque or speed is zero.</li> </ul>                                                                               |  |
|                                  | • Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.                                                       |  |
|                                  | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                                                                      |  |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

## Ports

## Input

SpdReq — Rotor speed command
scalar

Rotor speed command,  $\omega^*_m$ , in rad/s.

#### Dependencies

To create this port, select Speed Control for the Control Type parameter.

## TrqCmd — Torque command

scalar

Torque command, *T*\*, in N.m.

#### Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — DC bus voltage
scalar

DC bus voltage,  $v_{bus}$ , in V.

# PhaseCurrA — Current scalar

Stator current phase a,  $i_a$ , in A.

# PhaseCurrB — Current

Stator current phase b,  $i_b$ , in A.

SpdFdbk — Rotor speed
scalar

Rotor speed,  $\omega_m$ , in rad/s.

#### PosFdbk — Rotor electrical angle

scalar

Rotor electrical angle,  $\Theta_m$ , in rad.

### Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    | Description            | Units |
|-----------|------------------------|-------|
| SrcPwr    | Source power           | W     |
| LdPwr     | Load power             | W     |
| PwrLoss   | Power loss             | W     |
| MtrTrqEst | Estimated motor torque | N.m   |

#### BusCurr – Bus current

scalar

Estimated DC bus current,  $i_{bus}$ , in A.

#### PhaseVolt — Stator terminal voltages

array

Stator terminal voltages,  $V_a$ ,  $V_b$ , and  $V_c$ , in V.

## **Parameters**

#### **Block Options**

```
Control Type — Select control
Speed Control (default) | Torque Control
```

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

| Port Configuration | Creates Ports |
|--------------------|---------------|
| Speed Control      | SpdReq        |
| Torque Control     | TrqCmd        |

#### **Motor Parameters**

#### Stator resistance, Rs — Resistance

scalar

Stator phase winding resistance,  $R_s$ , in ohm.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                | Used to Derive                    |                    |
|--------------------------|-----------------------------------|--------------------|
|                          | Parameter                         | Tab                |
| Stator resistance,<br>Rs | D and Q axis integral gain,<br>Ki | Current Controller |

#### D-axis inductance, Ld — Inductance

scalar

D-axis winding inductance,  $L_d$ , in H.

#### Dependencies

| Parameter                | Used to Derive                                                                                                                           |                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                          | Parameter                                                                                                                                | Tab                   |
| D-axis inductance,<br>Ld | Torque Breakpoints,<br>T_mtpa<br>D-axis table data, id_mtpa<br>Q-axis table data, iq_mtpa<br>D, q, and max current<br>limits, idq_limits | Id and Iq Calculation |

### Q-axis inductance, Lq — Inductance

scalar

Q-axis winding inductance,  $L_q$ , in H.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                | Used to Derive                                                                                                                           |                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                          | Parameter                                                                                                                                | Tab                   |
| Q-axis inductance,<br>Lq | Torque Breakpoints,<br>T_mtpa<br>D-axis table data, id_mtpa<br>Q-axis table data, iq_mtpa<br>D, Q, and max current<br>limits, idq_limits | Id and Iq Calculation |

## Permanent magnet flux, lambda\_pm — Flux

scalar

Permanent magnet flux,  $\lambda_{pm}$ , in Wb.

#### Dependencies

| Parameter                           | Used to Derive                                                                                                                           |                       |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                     | Parameter                                                                                                                                | Tab                   |
| Permanent magnet<br>flux, lambda_pm | Torque Breakpoints,<br>T_mtpa<br>D-axis table data, id_mtpa<br>Q-axis table data, iq_mtpa<br>D, Q, and max current<br>limits, idq_limits | Id and Iq Calculation |

# Number of pole pairs, PolePairs — Poles scalar

Motor pole pairs, *P*.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                          | Used to Derive                                                                                                                          | ve                    |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
|                                    | Parameter                                                                                                                               | Tab                   |  |
| Number of pole<br>pairs, PolePairs | Torque Breakpoints,<br>T_mtpa<br>D-axis table data, id_mtpa<br>Q-axis table data, iq_mtpa<br>D, Q, and max current<br>limits_idg_limits | Id and Iq Calculation |  |

# Physical inertia, viscous damping, static friction, Mechanical — Inertia, damping, friction

vector

Mechanical properties of the motor:

- Motor inertia,  $F_v$ , in kgm<sup>2</sup>
- Viscous friction torque constant,  $F_{\nu}$ , in N.m/(rad/s)
- Static friction torque constant,  $F_s$ , in N.m

#### Dependencies

To enable this parameter, set the **Control Type** parameter to Speed Control.

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value that is on the **Motor Parameters** tab.

| Parameter                             | Used to Derive                      |                  |
|---------------------------------------|-------------------------------------|------------------|
|                                       | Parameter                           | Tab              |
| Physical inertia,<br>viscous damping. | Proportional gain, ba               | Speed Controller |
| static friction,<br>Mechanical        | Angular gain, Ksa                   |                  |
|                                       | Rotational gain, Kisa               |                  |
|                                       | Inertia compensation,<br>Jcomp      |                  |
|                                       | Viscous damping<br>compensation, Fv |                  |
|                                       | Static friction, Fs                 |                  |

#### Id and Iq Calculation

Maximum torque, T\_max — Torque
scalar

Maximum torque, in N.m.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                | Used to Derive                                                                                                                           |                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                          | Parameter                                                                                                                                | Tab                   |
| Maximum torque,<br>T_max | Torque Breakpoints,<br>T_mtpa<br>D-axis table data, id_mtpa<br>Q-axis table data, iq_mtpa<br>D, Q, and max current<br>limits, idg limits | Id and Iq Calculation |

MTPA table breakpoints, bp — Number of breakpoints
scalar

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                     | Used to Derive                                                                                                                           |                       |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                               | Parameter                                                                                                                                | Tab                   |
| MTPA table<br>breakpoints, pb | Torque Breakpoints,<br>T_mtpa<br>D-axis table data, id_mtpa<br>Q-axis table data, iq_mtpa<br>D, Q, and max current<br>limits, idq_limits | Id and Iq Calculation |

### Calculate MTPA Table Data — Derive parameters

button

Click to derive parameters.

#### Dependencies

On the **Id and Iq Calculation** tab, when you select **Calculate MPTA Table data**, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.

| Derived Parameter on Id and Iq Calculation tab |                                                                                               | Depends On                    |                          |
|------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|--------------------------|
|                                                |                                                                                               | Parameter                     | Tab                      |
| Torque<br>Breakpoints,<br>T mtna               | $T_{mtpa} = \frac{3}{2} P \left( \lambda_{pm} i_q + \left( L_d - L_q \right) i_d i_q \right)$ | Maximum torque,<br>T_max      | Id and Iq<br>Calculation |
| pu                                             |                                                                                               | MTPA table<br>breakpoints, pb |                          |

| <b>Derived Para</b>                                                                   | meter on Id and Iq Calculation                                                                                                                  | Depends On                                                                                                  |                     |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------|
| tab                                                                                   | tab                                                                                                                                             |                                                                                                             | Tab                 |
| D-axis table<br>data,<br>id_mtpa                                                      | $I_m = \frac{2T_{max}}{3P\lambda_{pm}}$                                                                                                         | Permanent<br>magnet flux,<br>lambda_pm<br>D-axis                                                            | Motor<br>Parameters |
| Q-axis table<br>data,<br>iq_mtpa<br>D, Q, and<br>max current<br>limits,<br>idq_limits | $\frac{i_{d_mtpa} = \frac{\lambda_{pm}}{4(L_q - L_d)} - \sqrt{\frac{\lambda_{pm}^2}{16(L_q - L_d)}}}{i_{q_mtpa} = \sqrt{I_m^2 - (i_{mtpa})^2}}$ | inductance, Ld<br><u>L'm</u><br>Q <sup>2</sup> axig<br>Inductance, Lq<br>Number of pole<br>pairs, PolePairs |                     |

The equations use these variables.

| i <sub>max</sub>   | Maximum phase current           |
|--------------------|---------------------------------|
| i <sub>d</sub>     | d-axis current                  |
| i <sub>q</sub>     | q-axis current                  |
| i <sub>d_max</sub> | Maximum d-axis phase current    |
| i <sub>q_max</sub> | Maximum q-axis phase current    |
| $i_{d\_mtpa}$      | d-axis phase current MTPA table |
| $i_{q\_mtpa}$      | q-axis phase current MTPA table |
| $\lambda_{pm}$     | Permanent magnet flux linkage   |
| $L_d$              | d-axis winding inductance       |
| $L_q$              | q-axis winding inductance       |
| Р                  | Motor pole pairs                |
| $T_{mtpa}$         | Torque MTPA breakpoints         |
| $I_m$              | Estimated maximum current       |

# Torque Breakpoints, T\_mtpa — Derived vector

Derived torque breakpoints, in N.m.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                        | Dependency                                             |                       |
|----------------------------------|--------------------------------------------------------|-----------------------|
|                                  | Parameter                                              | Tab                   |
| Torque<br>Breakpoints,<br>T_mtpa | Maximum torque, T_max<br>MTPA table breakpoints,<br>pb | Id and Iq Calculation |
|                                  | Permanent magnet flux,<br>lambda_pm                    | Motor Parameters      |
|                                  | D-axis inductance, Ld                                  |                       |
|                                  | Q-axis inductance, Lq                                  |                       |
|                                  | Number of pole pairs,<br>PolePairs                     |                       |

# D-axis table data, id\_mtpa — Derived vector

Derived d-axis table data, in A.

#### Dependencies

| Parameter                     | Dependency                                             |                       |
|-------------------------------|--------------------------------------------------------|-----------------------|
|                               | Parameter                                              | Tab                   |
| D-axis table data,<br>id_mtpa | Maximum torque, T_max<br>MTPA table breakpoints,<br>pb | Id and Iq Calculation |

| Parameter | Dependency                          |                  |
|-----------|-------------------------------------|------------------|
|           | Parameter                           | Tab              |
|           | Permanent magnet flux,<br>lambda_pm | Motor Parameters |
|           | D-axis inductance, Ld               |                  |
|           | Q-axis inductance, Lq               |                  |
|           | Number of pole pairs,<br>PolePairs  |                  |

## Q-axis table data, iq\_mtpa — Derived

vector

Derived q-axis table data, in A.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                     | Dependency                                             |                       |
|-------------------------------|--------------------------------------------------------|-----------------------|
|                               | Parameter                                              | Tab                   |
| D-axis table data,<br>id_mtpa | Maximum torque, T_max<br>MTPA table breakpoints,<br>pb | Id and Iq Calculation |
|                               | Permanent magnet flux,<br>lambda_pm                    | Motor Parameters      |
|                               | D-axis inductance, Ld                                  |                       |
|                               | Q-axis inductance, Lq                                  |                       |
|                               | Number of pole pairs,<br>PolePairs                     |                       |

D, Q, and max current limits, idq\_limits — Derived array

Derived d, q, and maximum current limits, in A.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                                      | Dependency                                             |                       |
|------------------------------------------------|--------------------------------------------------------|-----------------------|
|                                                | Parameter                                              | Tab                   |
| D, Q, and max<br>current limits,<br>idq_limits | Maximum torque, T_max<br>MTPA table breakpoints,<br>pb | Id and Iq Calculation |
|                                                | Permanent magnet flux,<br>lambda_pm                    | Motor Parameters      |
|                                                | D-axis inductance, Ld                                  |                       |
|                                                | Q-axis inductance, Lq                                  |                       |
|                                                | Number of pole pairs,<br>PolePairs                     |                       |

#### **Current Controller**

# Bandwidth of the current regulator, EV\_current — Bandwidth scalar

Derived current regulator bandwidth, in Hz.

#### Dependencies

| Parameter                                            | Used to Derive                                                                                                  |                    |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|
|                                                      | Parameter                                                                                                       | Tab                |
| Bandwidth of the<br>current regulator,<br>EV_current | D-axis proportional gain,<br>Kp_d<br>Q-axis proportional gain,<br>Kp_q<br>D and Q axis proportional<br>gain, Ki | Current Controller |

Sample time for the torque control, Tst - Time
scalar

Derived torque control sample time, in s.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                                     | Used to Derive           |                  |
|-----------------------------------------------|--------------------------|------------------|
|                                               | Parameter                | Tab              |
| Sample time for<br>the torque<br>control, Tst | Speed time constant, Ksf | Speed Controller |

# **Calculate Current Regulator Gains — Derive parameters** button

DULLOII

Click to derive parameters.

#### Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameter dependencies on other block parameters.

| Derived<br>Parameter on<br>Current Controller<br>tab | Dependency                                     |                    |
|------------------------------------------------------|------------------------------------------------|--------------------|
|                                                      | Parameter                                      | Tab                |
| D-axis<br>proportional gain,<br>Kp_d                 | Bandwidth of the current regulator, EV_current | Current Controller |
|                                                      | Stator resistance, Rs                          | Motor Parameters   |
| Q-axis<br>proportional gain,<br>Kp_q                 |                                                |                    |
| D and Q axis<br>integral gain, Ki                    |                                                |                    |

### D-axis proportional gain, Kp\_d — Derived

scalar

Derived d-axis proportional gain, in V/A.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                            | Dependency                                     |                    |
|--------------------------------------|------------------------------------------------|--------------------|
|                                      | Parameter                                      | Tab                |
| D-axis<br>proportional gain,<br>Kp_d | Bandwidth of the current regulator, EV_current | Current Controller |

**Q-axis proportional gain, Kp\_q — Derived** scalar

Derived q-axis proportional gain, in V/A.

#### Dependencies

| Parameter                            | Dependency                                     |                    |
|--------------------------------------|------------------------------------------------|--------------------|
|                                      | Parameter                                      | Tab                |
| Q-axis<br>proportional gain,<br>Kp_q | Bandwidth of the current regulator, EV_current | Current Controller |

### D and Q axis integral gain, $\operatorname{Ki}-\operatorname{Derived}$

scalar

Derived d- and q- axis integral gains, in V/A\*s.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                         | Dependency            |                  |
|-----------------------------------|-----------------------|------------------|
|                                   | Parameter             | Tab              |
| D and Q axis<br>integral gain, Ki | Stator resistance, Rs | Motor Parameters |

#### Speed Controller

# Bandwidth of the motion controller, EV\_motion — Bandwidth vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to 1/5 the value of the previous element. For example, if the desired cutoff frequency is 20 Hz, specify [20 4 0.8].

#### Dependencies

The parameter is enabled when the **Control Type** parameter is set to Speed Control.

| Parameter                          | Used to Derive        |                  |
|------------------------------------|-----------------------|------------------|
|                                    | Parameter             | Tab              |
| Bandwidth of the motion controller | Proportional gain, ba | Speed Controller |
| EV_motion                          | Angular gain, Ksa     |                  |
|                                    | Rotational gain, Kisa |                  |

#### Bandwidth of the state filter, EV\_sf - Bandwidth

scalar

State filter bandwidth, in Hz.

#### Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

| Parameter                            | Used to Derive           |                  |
|--------------------------------------|--------------------------|------------------|
|                                      | Parameter                | Tab              |
| Bandwidth of the state filter, EV_sf | Speed time constant, Ksf | Speed Controller |

### Sample time for the motion control, ${\sf Tsm}-{\sf Time}$

scalar

Sample time for the motion controller, in s.

#### Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

| Parameter                                     | Used to Derive                             |                  |
|-----------------------------------------------|--------------------------------------------|------------------|
|                                               | Parameter                                  | Tab              |
| Sample time for<br>the motion<br>control, Tsm | Proportional gain, ba<br>Angular gain, Ksa | Speed Controller |
|                                               | Rotational gain, Kisa                      |                  |

**Calculate Speed Regulator Gains — Derive parameters** button

Click to derive parameters.

#### Dependencies

On the **Speed Controller** tab, when you select **Calculate Speed Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

| Derived Parameter on Speed Controller<br>tab |                                                                       | Depends On                                                                                  |                    |
|----------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------|
|                                              |                                                                       | Parameter                                                                                   | Tab                |
| Proportional<br>gain, ba                     | $b_{a} = \frac{J_{p} - J_{p} p_{1} p_{2} p_{3}}{T_{sm}}$              | Sample time for<br>the motion<br>control, Tsm                                               | Speed Controller   |
|                                              |                                                                       | Bandwidth of<br>the motion<br>controller,<br>EV_motion<br>Bandwidth of<br>the state filter, |                    |
| Angular<br>gain Ksa                          | $ \int_{K} J_{p}(p_{1}p_{2}+p_{2}p_{3}+p_{3}p_{1}) -$                 | $EV_sf$                                                                                     | Current Controller |
| yaiii, Ksa                                   | $T_{sa}^2 = T_{sm}^2$                                                 | control, Tst                                                                                |                    |
| Rotational<br>gain, Kisa                     | $K_{isa} = \frac{-J_{p}(p_{1} + p_{2} + p_{3}) + 3J_{p}}{T_{sm}^{3}}$ | Physical inertia,<br>$V_{sa}T_{sm} - K_{sa}T_{sm}$<br>damping, static                       | Motor Parameters   |
| Speed time<br>constant,<br>Ksf               | $K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$  | Mechanical                                                                                  |                    |
| Inertia<br>compensatio<br>n, Jcomp           | $J_{comp} = J_p$                                                      | Physical inertia,<br>viscous<br>damping, static<br>friction,<br>Mechanical                  | Motor Parameters   |
| Derived Parameter on Speed Controller<br>tab |                | Depends On |     |
|----------------------------------------------|----------------|------------|-----|
|                                              |                | Parameter  | Tab |
| Viscous<br>damping<br>compensatio<br>n, Fv   | $F_{v}$        |            |     |
| Static<br>friction, Fs                       | F <sub>s</sub> |            |     |

The equations use these variables.

| Р                | Motor pole pairs                     |
|------------------|--------------------------------------|
| $b_a$            | Speed regulator proportional gain    |
| $K_{sa}$         | Speed regulator integral gain        |
| K <sub>isa</sub> | Speed regulator double integral gain |
| $K_{sf}$         | Speed regulator time constant        |
| $J_p$            | Motor inertia                        |
| $T_{sm}$         | Motion controller sample time        |
| $EV_{sf}$        | State filter bandwidth               |
| $EV_{motion}$    | Motion controller bandwidth          |

#### Proportional gain, ba — Derived

scalar

Derived proportional gain, in N.m/(rad/s).

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                | Dependency                                                           |                  |
|--------------------------|----------------------------------------------------------------------|------------------|
|                          | Parameter                                                            | Tab              |
| Proportional gain,<br>ba | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

| Parameter | Dependency                                    |                  |
|-----------|-----------------------------------------------|------------------|
|           | Parameter                                     | Tab              |
|           | Bandwidth of the motion controller, EV_motion | Speed Controller |
|           | Sample time for the motion control, Tsm       |                  |

## Angular gain, Ksa — Derived

scalar

Derived angular gain, in N.m/rad.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter         | Dependency                                                           |                  |
|-------------------|----------------------------------------------------------------------|------------------|
|                   | Parameter                                                            | Tab              |
| Angular gain, Ksa | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |
|                   | Bandwidth of the motion controller, EV_motion                        | Speed Controller |
|                   | Sample time for the motion control, Tsm                              |                  |

### Rotational gain, Kisa — Derived

scalar

Derived rotational gain, in N.m/(rad\*s).

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                | Dependency                                                           |                  |
|--------------------------|----------------------------------------------------------------------|------------------|
|                          | Parameter                                                            | Tab              |
| Rotational gain,<br>Kisa | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |
|                          | Bandwidth of the motion controller, EV_motion                        | Speed Controller |
|                          | Sample time for the motion control, Tsm                              |                  |

Speed time constant, Ksf – Derived

scalar

Derived speed time constant, in 1/s.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                   | Dependency                              |                    |
|-----------------------------|-----------------------------------------|--------------------|
|                             | Parameter                               | Tab                |
| Speed time<br>constant, Ksf | Sample time for the torque control, Tst | Current Controller |
|                             | Bandwidth of the state filter, EV_sf    | Speed Controller   |

### $\label{eq:compensation, Jcomp - Derived} Inertia \ compensation, \ Jcomp - Derived$

scalar

Derived inertia compensation, in kg\*m^2.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                         | ameter Dependency                                                    |                  |
|-----------------------------------|----------------------------------------------------------------------|------------------|
|                                   | Parameter                                                            | Tab              |
| Inertia<br>compensation,<br>Jcomp | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

## Viscous damping compensation, Fv — Derived

scalar

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                           | Dependency                                                           |                  |
|-------------------------------------|----------------------------------------------------------------------|------------------|
|                                     | Parameter                                                            | Tab              |
| Viscous damping<br>compensation, Fv | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

#### Static friction, Fs — Derived

scalar

Derived static friction, in N.m/(rad/s).

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter           | Dependency                                                           |                  |
|---------------------|----------------------------------------------------------------------|------------------|
|                     | Parameter                                                            | Tab              |
| Static friction, Fs | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

#### **Electrical Losses**

#### Parameterize losses by — Select type

```
Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data
```

| Setting                          | Block Implementation                                                                                                                                                                                                                       |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for inverter efficiency.                                                                                                                                                                 |
| Tabulated loss data              | Electrical loss calculated as a function of motor speeds and load torques.                                                                                                                                                                 |
| Tabulated efficiency<br>data     | <ul> <li>Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.</li> <li>Converts the efficiency values you provide into losses and uses the tabulated losses for simulation</li> </ul> |
|                                  | <ul> <li>Ignores efficiency values you provide for zero speed or<br/>zero torque. Losses are assumed zero when either<br/>torque or speed is zero.</li> </ul>                                                                              |
|                                  | • Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.                                                      |
|                                  | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                                                                     |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

#### **Overall inverter efficiency, eff — Constant**

scalar

Overall inverter efficiency, *Eff*, in %.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Vector of speeds (w) for tabulated loss, <code>w\_loss\_bp</code> — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Vector of torques (T) for tabulated loss, T\_loss\_bp — Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in N.m.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

### Corresponding losses, losses\_table — Table

M-by-N matrix

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

# **Vector of speeds (w) for tabulated efficiency, w\_eff\_bp — Breakpoints** 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

# Vector of torques (T) for tabulated efficiency, T\_eff\_bp — Breakpoints

1-by-N matrix

Torque breakpoints for lookup table when calculating efficiency, in N.m.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

#### **Corresponding efficiency, efficiency\_table — Table** M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

### References

- [1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." *Proceedings of the IEEE*, Vol. 82, Issue 8, August 1994, pp. 1215–1240.
- [2] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." *IEEE Transactions on Industry Applications*, Vol. 30, Issue 4, July/ August 1994, pp. 920–926.
- [3] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
- [4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." *IEEE Transactions on Industry Applications*, Vol. 36, Issue 3, May/June 2000, pp. 817–825.
- [5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."*IEEE Transactions on Industry Applications*, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42–50.

## See Also

Flux-Based PM Controller | IM Controller | Interior PMSM | Surface Mount PM Controller

Introduced in R2017a

## **Flow Boundary**

Flow boundary for ambient temperature and pressure Library: Propulsion / Combustion Engine Components / Fundamental Flow



## Description

The Flow Boundary block implements a flow boundary that typically represents ambient temperature and pressure. Engine models require flow boundaries at the intake inlet and exhaust outlet. In dynamic engine models, flow-modifying components (for example, flow restriction, turbines, and compressors) connect to control volumes and flow boundaries.

You can specify these block configurations:

- Constant pressure and temperature
- Externally input pressure and temperature

The Flow Boundary block outputs pressure, temperature, and specific enthalpy:

 $h = c_p T$ 

The block models the mass fractions as dry air, resulting in these mass fractions:

- $y_{N2} = 0.767$
- $y_{O2} = .233$

The equation uses these variables.

| Temperature                        |
|------------------------------------|
| Specific enthalpy                  |
| Specific heat at constant pressure |
| Nitrogen mass fraction             |
| Oxygen mass fraction               |
|                                    |

## Ports

### Input

## Prs — Pressure scalar

External input pressure, *P*, in Pa.

#### Dependencies

To create this port, select External input for the **Pressure and temperature source** parameter.

### Temp — Temperature

scalar

External input temperature, *T*, in K.

#### Dependencies

To create this port, select External input for the **Pressure and temperature source** parameter.

### Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    | Description                | Units |
|-----------|----------------------------|-------|
| BndryPrs  | Boundary pressure          | Pa    |
| BndryTemp | Boundary temperature       | К     |
| BndryEnth | Boundary specific enthalpy | J/kg  |

### C — Boundary pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the flow boundary:

- Prs Pressure, P, in Pa
- Temp Temperature, T, in K
- Enth Specific enthalpy, h, in J/kg
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

## **Parameters**

#### **Block Options**

Pressure and temperature source — Select source
External input (default) | Constant

Pressure and temperature source.

#### Dependencies

The table summarizes the parameter and port dependencies.

| Value          | Enables Parameters | Creates Ports |
|----------------|--------------------|---------------|
| Constant       | Pressure, Pcnst    | None          |
|                | Temperature, Tcnst |               |
| External input | None               | Prs           |
|                |                    | Temp          |

#### Image type — Icon color

Cold (default) | Hot

Select color for block icon:

- Cold for blue
- Hot for red

#### Pressure, Pcnst - Constant

scalar

Constant pressure, P, in Pa.

#### Dependencies

To enable this parameter, select Constant for the **Pressure and temperature source** parameter.

#### Temperature, Tcnst - Constant

scalar

Constant temperature, *T*, in K.

#### Dependencies

To enable this parameter, select Constant for the **Pressure and temperature source** parameter.

# Specific heat at constant pressure, cp - Constant, J/(kg(K) scalar

Specific heat at constant pressure, in J/(kg\*K).

### References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

## See Also

Compressor | Flow Restriction | Turbine

#### Introduced in R2017a

## **Flow Restriction**

Isentropic ideal gas flow through an orifice Library: Propulsion / Combustion Engine Components / Fundamental Flow



## Description

The Flow Restriction block models isentropic ideal gas flow through an orifice. The block uses the conservation of mass and energy to determine the mass flow rate. The flow velocity is limited by choked flow.

You can specify these orifice area models:

- Constant
- External input
- Throttle body geometry

### **Equations**

The Flow Restriction block implements these equations.

| Calculation                    | Equations                                                                                                                                                   |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard Orifice               | $\dot{m}_{orf} = \Gamma \cdot \Psi \left( P_{ratio} \right)$                                                                                                |
|                                | $P_{ratio} = \frac{P_{downstr}}{P_{upstr}}$                                                                                                                 |
|                                | $\Gamma = \frac{A_{eff} \cdot P_{upstr}}{\sqrt{R \cdot T_{upstr}}}$                                                                                         |
|                                | $P_{cr} = \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$                                                                                        |
|                                |                                                                                                                                                             |
|                                | $ \sqrt{\gamma \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}} \qquad P_{ratio} < P_{cr} $                                                     |
|                                | $\Psi = \begin{cases} \frac{2\gamma}{\gamma - 1} P_{ratio} \overline{\gamma} - P_{ratio} \overline{\gamma} \\ P_{cr} \le P_{ratio} \le P_{lim} \end{cases}$ |
| Constituent Mass<br>Flow Rates | $\dot{m}_i = \frac{\sqrt{\gamma - 1}}{\dot{m}_{orf} y_{upstr, f}} \underbrace{(2 - \gamma + 1)}_{(2 - \gamma + 1)}$                                         |
| Constant Orifice<br>Area       | $A_{eff} = \frac{P_{ratio} - 1}{P_{lim} f_{-c} h_{st}} \frac{2\gamma}{\gamma C d_{enst}} P_{lim}^{\gamma} - P_{lim}^{\gamma} P_{lim} < P_{ratio}$           |
| External Input<br>Orifice Area | $A_{eff} = A_{orf\_ext} \cdot Cd_{ext}$                                                                                                                     |

| Calculation               | Equations                                                                     |
|---------------------------|-------------------------------------------------------------------------------|
| Throttle Body<br>Geometry | $\theta_{thr} = Pct_{thr} \cdot \frac{90}{100}$                               |
|                           | $A_{eff\_thr} = \frac{\pi}{4} D_{thr}^2 C_{d\_thr} \left(\theta_{thr}\right)$ |

The equations use these variables.

| A an A an I              | Effective orifice cross-sectional area                                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Aeff , Aeff _thr         | Orifice area                                                                                                                           |
| $A_{orf\ \_cnst}$ ,      |                                                                                                                                        |
| A <sub>orf_ext</sub>     |                                                                                                                                        |
| $Cd_{cnst}$ , $Cd_{ext}$ | Discharge coefficient                                                                                                                  |
| R                        | Ideal gas constant                                                                                                                     |
| P <sub>cr</sub>          | Critical pressure at which choked flow occurs                                                                                          |
| γ                        | Ratio of specific heats                                                                                                                |
| Г                        | Flow function based on pressure ratio                                                                                                  |
| P <sub>ratio</sub>       | Pressure ratio                                                                                                                         |
| P <sub>upstr</sub>       | Upstream orifice pressure                                                                                                              |
| P <sub>downstr</sub>     | Downstream orifice pressure                                                                                                            |
| P <sub>lim</sub>         | Pressure ratio limit to avoid singularities as the pressure ratio approaches 1                                                         |
| Yupstr,i                 | Upstream species mass fraction for $i = O_2$ , $N_2$ , unburned fuel, $CO_2$ , $H_2O$ , $CO$ , $NO$ , $NO_2$ , PM, air, and burned gas |
| $\dot{m}_i$              | Mass flow rate for $i$ = $O_2,N_2,$ unburned fuel, $CO_2,H_2O,CO,NO,NO_2,PM,$ air, and burned gas                                      |
| $\theta_{thr}$           | Throttle angle                                                                                                                         |

| $Pct_{thr}$  | Percentage of throttle body that is open |
|--------------|------------------------------------------|
| $C_{d\_thr}$ | Throttle discharge coefficient           |
| $D_{thr}$    | Throttle body diameter at opening        |

## **Ports**

### Input

A — Inlet orifice pressure, temperature, enthalpy, mass fractions two-way connector port

Bus containing orifice:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

**B** — **Outlet orifice pressure, temperature, enthalpy, mass fractions** two-way connector port

Bus containing orifice:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- **02MassFrac** Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

#### Area — Orifice area

scalar

External area input for orifice area,  $A_{orf}$  ext, in m<sup>2</sup>.

#### Dependencies

To create this port, select External input for the Orifice area model parameter.

## ThrPct — Throttle body percent open scalar

Percentage of throttle body that is open,  $Pct_{thr}$ .

#### Dependencies

To create this port, select Throttle body geometry for the **Orifice area model** parameter.

### Output

#### A — Inlet mass flow rate, heat flow rate, temperature

two-way connector port

#### Bus containing:

- MassFlw Mass flow rate through inlet, in kg/s
- HeatFlw Inlet heat flow rate, in J/s
- Temp Inlet temperature, in K
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

#### **B** — Outlet mass flow rate, heat flow rate, temperature

two-way connector port

Bus containing:

- MassFlw Outlet mass flow rate, in kg/s
- HeatFlw Outlet heat flow rate, in J/s
- Temp Outlet temperature, in K
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal |        |             | Description               | Units |
|--------|--------|-------------|---------------------------|-------|
| Flw    | PrsAdj | DwnstrmPrs  | Downstream<br>pressure    | Pa    |
|        |        | UpstrmPrs   | Upstream pressure         | Pa    |
|        |        | PrsRatio    | Pressure ratio            | NA    |
|        |        | DwnstrmTemp | Downstream<br>temperature | K     |

| Signal     |                     |                       | Description                                            | Units |
|------------|---------------------|-----------------------|--------------------------------------------------------|-------|
|            |                     | UpstrmTemp            | Upstream<br>temperature                                | K     |
| OrfMassFlw |                     |                       | Mass flow rate through orifice                         | kg/s  |
|            | SpeciesMassF<br>low | 02MassFlw             | Oxygen mass flow<br>rate                               | kg/s  |
|            |                     | N2MassFlw             | Nitrogen mass flow<br>rate                             | kg/s  |
|            |                     | UnbrndFuelMassFl<br>w | Unburned gas mass<br>flow rate                         | kg/s  |
|            |                     | CO2MassFlw            | Carbon dioxide mass<br>flow rate                       | kg/s  |
|            |                     | H20MassFlw            | Water mass flow rate                                   | kg/s  |
|            |                     | COMassFlw             | Carbon monoxide<br>mass flow rate                      | kg/s  |
|            |                     | NOMassFlw             | Nitric oxide mass<br>flow rate                         | kg/s  |
|            |                     | NO2MassFlw            | Nitrogen dioxide<br>mass flow rate                     | kg/s  |
|            |                     | NOxMassFlw            | Nitric oxide and<br>nitrogen dioxide<br>mass flow rate | kg/s  |
|            |                     | PmMassFlw             | Particulate matter<br>mass flow rate                   | kg/s  |
|            |                     | AirMassFlw            | Air mass flow rate                                     | kg/s  |
|            |                     | BrnedGasMassFlw       | Burned gas mass<br>flow rate                           | kg/s  |
| Area       | FlwArea             |                       | Cross-sectional flow area                              | m^2   |
|            | EffctArea           |                       | Effective orifice<br>cross-sectional area              | m^2   |

| Signal |        | Description                     | Units |
|--------|--------|---------------------------------|-------|
|        | ThrAng | Throttle area, if<br>applicable | deg   |

## **Parameters**

#### **Block Options**

```
Orifice area model — Select model
Constant (default) | External input | Throttle body geometry
```

Orifice area model.

#### Dependencies

The orifice area model enables the parameters on the Area Parameters tab.

### Image type — Icon color

Cold (default) | Hot

Block icon color:

- Cold for blue.
- Hot for red.

#### General

Ratio of specific heats, gamma — Ratio scalar

Ratio of specific heats,  $\gamma$ .

## Ideal gas constant, R — Constant

scalar

Ideal gas constant, R, in J/(kg\*K).

# Pressure ratio linearize limit, Plim - Limit scalar

Pressure ratio limit to avoid singularities as the pressure ratio approaches 1,  $P_{lim}$ .

#### Area

Constant area value, Aorf\_cnst — Area
scalar

Constant area value,  $A_{orf cnst}$ , in m<sup>2</sup>.

#### Dependencies

To enable this parameter, select Constant for the Orifice area model parameter.

# Discharge coefficient, Cd\_cnst — Coefficient scalar

Discharge coefficient for constant area, Cd<sub>cnst</sub>.

#### Dependencies

To enable this parameter, select Constant for the Orifice area model parameter.

### Discharge coefficient, Cd\_ext - Coefficient

scalar

Discharge coefficient for external area input,  $Cd_{ext}$ .

#### Dependencies

To enable this parameter, select External input for the **Orifice area model** parameter.

### Throttle diameter, Dthr — Diameter

```
scalar
```

Throttle body diameter at opening,  $D_{thr}$ , in mm.

#### Dependencies

To enable this parameter, select Throttle body geometry for the **Orifice area model** parameter.

# Discharge coefficient table, ThrCd - Coefficient array

Discharge coefficient table,  $C_{d thr}$ .

#### Dependencies

To enable this parameter, select Throttle body geometry for the **Orifice area model** parameter.

#### Angle breakpoints, ThrAngBpts — Angle

array

Angle breakpoints,  $Thr_{ang\_bpts}$ , in deg.

#### Dependencies

To enable this parameter, select Throttle body geometry for the **Orifice area model** parameter.

### References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

## See Also

Control Volume System | Heat Exchanger

#### Introduced in R2017a

## **Flux-Based PMSM**

Flux-based permanent magnet synchronous motor Library: Propulsion / Electric Motors



## Description

The Flux-Based PMSM block implements a flux-based three-phase permanent magnet synchronous motor (PMSM) with a tabular-based electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

Flux-based motor models take into account magnetic saturation and iron losses. To calculate the magnetic saturation and iron loss, the Flux-Based PMSM block uses the inverse of the flux linkages. To obtain the block parameters, you can use finite-element analysis (FEA) or measure phase voltages using a dynamometer.

### **Three-Phase Sinusoidal Model Electrical System**

The block implements equations that are expressed in a stationary rotor reference (dq) frame. The d-axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.



The block uses these equations.

| Calculation                           | Equation                                                                                                                          |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| <i>q</i> - and <i>d</i> -axis voltage |                                                                                                                                   |
| <i>q</i> - and <i>d</i> -axis current | $v_{d} = \frac{d\psi_{d}}{dt} + R_{s}i_{d} - \omega_{e}\psi_{q}$ $v_{q} = \frac{d\psi_{q}}{dt} + R_{s}i_{q} + \omega_{e}\psi_{d}$ |
| Electromechanical torque              | $i_d = f(\psi_d, \psi_q)$                                                                                                         |
|                                       | $\mu_q = g(\psi_d, \psi_q)$                                                                                                       |

The equations use these variables.

$$T_e = 1.5 P[\psi_d i_q - \psi_q i_d]$$

 $\omega_m$  Rotor mechanical speed

| $\omega_e$                      | Rotor electrical speed                                                     |
|---------------------------------|----------------------------------------------------------------------------|
| $\Theta_{da}$                   | $d\boldsymbol{q}$ stator electrical angle with respect to the rotor a-axis |
| $R_s$ , $R_r$                   | Resistance of the stator and rotor windings, respectively                  |
| i <sub>q</sub> , i <sub>d</sub> | q- and $d$ -axis current, respectively                                     |
| $v_q$ , $v_d$                   | q- and $d$ -axis voltage, respectively                                     |
| $\Psi_{q}, \Psi_{d}$            | q- and $d$ -axis magnet flux, respectively                                 |
| Р                               | Number of pole pairs                                                       |
| $T_e$                           | Electromagnetic torque                                                     |

### Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase  $(\alpha, \beta)$  quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\begin{split} & \omega_e = P \omega_m \\ & \frac{d \theta_e}{dt} = \omega_e \end{split}$$

| Transform | Description                                                                                                                                    | Equations                                                                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clarke    | Converts balanced three-phase quantities $(a, b)$ into balanced two-<br>phase quadrature quantities $(\alpha, \beta)$ .                        | $x_{\alpha} = \frac{2}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $\sqrt{3} = \sqrt{3}$                                                                                            |
| Park      | Converts balanced two-phase<br>orthogonal stationary quantities<br>$(\alpha, \beta)$ into an orthogonal rotating<br>reference frame $(d, q)$ . | $x_{\beta} = \frac{1}{2} x_{b} - \frac{1}{2} x_{c}$ $x_{d} = x_{\alpha} \cos \theta_{e} + x_{\beta} \sin \theta_{e}$ $x_{q} = -x_{\alpha} \sin \theta_{e} + x_{\beta} \cos \theta_{e}$ |

| Transform      | Description                                                                                                                                    | Equations                                                                                                                                                                                                              |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inverse Clarke | Converts balanced two-phase quadrature quantities $(\alpha, \beta)$ into balanced three-phase quantities $(a, b)$ .                            | $x_a = x_a$<br>$x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$                                                                                                                                                |
| Inverse Park   | Converts an orthogonal rotating<br>reference frame $(d, q)$ into<br>balanced two-phase orthogonal<br>stationary quantities $(\alpha, \beta)$ . | $\begin{aligned} x_{\alpha}^{c} &= \frac{1}{x_{\alpha}} x_{\alpha}^{c} \overline{\theta_{e}} \frac{\sqrt{3}}{2} x_{q}^{c} \sin \theta_{e} \\ x_{\beta} &= x_{d} \sin \theta_{e} + x_{q} \cos \theta_{e} \end{aligned}$ |

The transforms use these variables.

| $\omega_m$ | Rotor mechanical speed   |
|------------|--------------------------|
| Р          | Motor pole pairs         |
| $\omega_e$ | Rotor electrical speed   |
| $\Theta_e$ | Rotor electrical angle   |
| X          | Phase current or voltage |

### **Mechanical System**

The rotor angular velocity is given by:

$$\begin{split} \frac{d}{dt}\omega_m &= \frac{1}{J} \big( T_e - T_f - F \omega_m - T_m \big) \\ \frac{d\theta_m}{dt} &= \omega_m \end{split}$$

The equations use these variables.

| I | Combined i  | inertia ( | of rotor | and load |
|---|-------------|-----------|----------|----------|
| J | oombiiiou . | inor tra  | 01 10001 | una iouu |

- *F* Combined viscous friction of rotor and load
- $\theta_m$  Rotor mechanical angular position
- $T_m$  Rotor shaft torque

| $T_e$      | Electromagnetic torque                  |
|------------|-----------------------------------------|
| $T_{f}$    | Combined rotor and load friction torque |
| $\omega_m$ | Rotor mechanical speed                  |

## Ports

### Input

# LdTrq — Rotor shaft torque scalar

Rotor shaft input torque,  $T_m$ , in N.m.

#### Dependencies

To create this port, select Torque for the Port Configuration parameter.

#### Spd — Rotor shaft speed

scalar

Angular velocity of the rotor,  $\omega_{m},$  in rad/s.

#### Dependencies

To create this port, select Speed for the **Port Configuration** parameter.

### PhaseVolt — Stator terminal voltages

vector

Stator terminal voltages,  $V_a$ ,  $V_b$ , and  $V_c$ , in V.

#### Dependencies

To create this port, select Speed or Torque for the Port Configuration parameter.

### Output

Info — Bus signal bus

| Signal   | Description                              | Variable       | Units |
|----------|------------------------------------------|----------------|-------|
| IaStator | Stator phase current A                   | i <sub>a</sub> | А     |
| IbStator | Stator phase current B                   | i <sub>b</sub> | А     |
| IcStator | Stator phase current C                   | i <sub>c</sub> | А     |
| IdSync   | d-axis current                           | i <sub>d</sub> | А     |
| IqSync   | qaxis current                            | i <sub>q</sub> | А     |
| VdSync   | d-axis voltage                           | V <sub>d</sub> | V     |
| VqSync   | q-axis axis voltage                      | Vq             | V     |
| MtrSpd   | Angular mechanical velocity of the rotor | $\omega_m$     | rad/s |
| MtrPos   | Rotor mechanical<br>angular position     | $\theta_m$     | rad   |
| MtrTrq   | Electromagnetic torque                   | T <sub>e</sub> | N.m   |

The bus signal contains these block calculations.

## **Parameters**

#### Port Configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

| Port Configuration | Creates Ports |
|--------------------|---------------|
| Torque             | LdTrq         |
|                    | PhaseVolt     |
|                    | Info          |
| Speed              | Spd           |
|                    | PhaseVolt     |
|                    | Info          |

Stator phase resistance, Rs — Resistance
scalar

Stator phase resistance,  $R_s$ , in ohm.

Vector of d-axis flux, flux\_d - Flux
vector

*d*-axis flux,  $\Psi_d$ , in Wb.

Vector of q-axis flux, flux\_q - Flux
vector

*q*-axis flux,  $\Psi_q$ , in Wb.

Corresponding d-axis current, id — Current
vector

*d*-axis current,  $i_d$ , in A.

Corresponding q-axis current, iq — Current
vector

*q*-axis current,  $i_a$ , in A.

Number of pole pairs, P — Pole pairs scalar

Motor pole pairs, *P*.

Initial flux, fluxdq0 - Flux
vector

Initial *d*- and *q*-axis flux,  $\Psi_{q0}$  and  $\Psi_{d0}$ , in Wb.

Initial mechanical position, theta\_init — Angle
scalar

Initial rotor angular position,  $\theta_{m0}$ , in rad.

Initial mechanical speed, omega\_init — Speed
scalar

Initial angular velocity of the rotor,  $\omega_{m0}$ , in rad/s.

#### Dependencies

To enable this parameter, select the Torque configuration parameter.

# Physical inertia, viscous damping, and static friction, mechanical — Inertia, damping, friction

vector

Mechanical properties of the rotor:

- Inertia, J, in kgm<sup>2</sup>
- Viscous damping, *F*, in N.m/(rad/s)
- Static friction, *T<sub>f</sub>*, in N.m

#### Dependencies

To enable this parameter, select the Torque configuration parameter.

### References

- [1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." *IEEE Transactions on Industry Applications*, Vol. 51, No. 4, July/August 2015.
- [2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, July 2015.

## See Also

Flux-Based PM Controller | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PMSM

### **Topics**

"Generate Parameters for Flux-Based Blocks"

Introduced in R2017b

## **Flux-Based PM Controller**

Controller for a flux-based permanent magnet synchronous motor Library: Propulsion / Electric Motor Controllers



## Description

The Flux Based PM Controller block implements a flux-based, field-oriented controller for an interior permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The internal torque control implements strategies for achieving maximum torque per ampere (MTPA) and weakening the magnetic flux. You can specify either the speed or torque control type.

The Flux Based PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.



The block implements equations using these variables.

| ω                     | Rotor speed                                  |
|-----------------------|----------------------------------------------|
| $\omega^*$            | Rotor speed command                          |
| <i>T</i> *            | Torque command                               |
| i <sub>d</sub>        | d-axis current                               |
| $i_d^*$               | d-axis current command                       |
| i <sub>q</sub>        | q-axis current                               |
| $i_q^*$               | q-axis current command                       |
| $v_d$ ,               | d-axis voltage                               |
| $v_d^*$               | d-axis voltage command                       |
| $v_q$                 | q-axis voltage                               |
| $v_q^*$               | q-axis voltage command                       |
| $v_a$ , $v_b$ , $v_c$ | Stator phase a, b, $\ensuremath{c}$ voltages |
| $i_a, i_b, i_c$       | Stator phase a, b, c currents                |

## **Speed Controller**

To implement the speed controller, select the **Control Type** parameter **Speed Control**. If you select the **Control Type** parameter **Torque Control**, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Flux Based PM Controller block.



The state filter is a low-pass filter that generates the acceleration command based on the speed command. The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$$

The equations use these variables.

| $EV_{sf}$ | Bandwidth of the speed command filter |
|-----------|---------------------------------------|
| $T_{sm}$  | Motion controller sample time         |
| $K_{sf}$  | Speed regulator time constant         |

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. To filter the speed, the block uses a proportional integral (PI) controller.

$$T_{cmd} = Kp_{\omega}(\omega_m^* - \omega_m) + Ki_{\omega} \frac{zT_{sm}}{z-1}(\omega_m^* - \omega_m)$$

The equations use these variables.
| $\omega_m$       | Rotor speed                       |
|------------------|-----------------------------------|
| $\omega_m^*$     | Rotor speed command               |
| T <sub>cmd</sub> | Torque command                    |
| $Kp_{\omega}$    | Speed regulator proportional gain |
| Ki <sub>ω</sub>  | Speed regulator integral gain     |
| T <sub>sm</sub>  | Speed regulator sample rate       |

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

The feedforward torque command uses this equation.

$$T_{cmd_{-}ff} = J_p \dot{\omega}_m + F_v \omega_m + F_s \frac{\omega_m}{|\omega_m|}$$

where:

| $J_p$          | Rotor inertia                    |
|----------------|----------------------------------|
| $T_{cmd_{ff}}$ | Torque command feedforward       |
| $F_s$          | Static friction torque constant  |
| $F_{\nu}$      | Viscous friction torque constant |
| $F_s$          | Static friction torque constant  |
| $\omega_m$     | Rotor speed                      |

The block uses lookup tables to determine the d-axis and q-axis current commands. The lookup tables are functions of mechanical speed and torque. To determine the lookup tables, you can use an external finite element analysis (FEA) models or dynamometer test results.

$$\begin{split} i_{dref} &= f\left(\left|\boldsymbol{\omega}_{m}\right|, \left|T_{ref}\right|\right) \\ i_{qref} &= sign(T_{ref}) * f\left(\left|\boldsymbol{\omega}_{m}\right|, \left|T_{ref}\right|\right) \end{split}$$

The equations use these variables.

| $\omega_m$                            | Rotor speed                                      |
|---------------------------------------|--------------------------------------------------|
| T <sub>ref</sub>                      | Torque command                                   |
| i <sub>dref</sub> , i <sub>qref</sub> | d- and $q$ -axis reference current, respectively |

The block uses these equations to calculate the voltage in the motor reference frame.

$$v_d = \frac{d\psi_d}{dt} + R_s i_d - \omega_e \psi_q$$
$$v_q = \frac{d\psi_q}{dt} + R_s i_q + \omega_e \psi_d$$

$$\begin{split} \frac{d\psi_d}{dt} + R_s i_d &= K p_d (i_d^* - i_d) + K i_d \frac{z T_{st}}{z - 1} (i_d^* - i_d) \\ \frac{d\psi_q}{dt} + R_s i_q &= K p_q (i_q^* - i_q) + K i_q \frac{z T_{st}}{z - 1} (i_q^* - i_q) \end{split}$$

$$\begin{split} v_{d} &= K p_{i}(i_{d}^{*} - i_{d}) + K i_{d} \, \frac{zT_{st}}{z - 1}(i_{d}^{*} - i_{d}) + \omega_{e} \psi_{q} \\ v_{q} &= K p_{i}(i_{q}^{*} - i_{q}) + K i_{q} \, \frac{zT_{st}}{z - 1}(i_{q}^{*} - i_{q}) - \omega_{e} \psi_{d} \end{split}$$

$$\psi_q = f(i_d, i_q)$$
  
$$\psi_d = f(i_d, i_q)$$

The equations use these variables.

| Rotor mechanical speed                                    |
|-----------------------------------------------------------|
| Rotor electrical speed                                    |
| Resistance of the stator and rotor windings, respectively |
| q- and $d$ -axis current, respectively                    |
| q- and d-axis voltage, respectively                       |
|                                                           |

| $\Psi_{q}$ , $\Psi_{d}$ | q- and $d$ -axis magnet flux, respectively     |
|-------------------------|------------------------------------------------|
| $T_{st}$                | Current regulator sample rate                  |
| $Ki_d$ , $Ki_q$         | d- and q- axis integral gain, respectively     |
| $Kp_d$ , $Kp_q$         | d- and q- axis proportional gain, respectively |

### Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase  $(\alpha, \beta)$  quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$
$$\frac{d\theta_e}{dt} = \omega_e$$

| Transform      | Description                                                                                                                                    | Equations                                                                                                                                                                                      |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clarke         | Converts balanced three-phase quantities $(a, b)$ into balanced two-phase quadrature quantities $(\alpha, \beta)$ .                            | $x_{\alpha} = \frac{2}{3}x_{\alpha} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $\sqrt{3} \qquad \sqrt{3}$                                                                                          |
| Park           | Converts balanced two-phase<br>orthogonal stationary quantities<br>$(\alpha, \beta)$ into an orthogonal rotating<br>reference frame $(d, q)$ . | $x_{\beta} = \frac{x_{b}}{2} x_{b} - \frac{x_{c}}{2} x_{c}$ $x_{d} = x_{\alpha} \cos \theta_{e} + x_{\beta} \sin \theta_{e}$ $x_{q} = -x_{\alpha} \sin \theta_{e} + x_{\beta} \cos \theta_{e}$ |
| Inverse Clarke | Converts balanced two-phase quadrature quantities $(\alpha, \beta)$ into balanced three-phase quantities $(a, b)$ .                            | $x_a = x_a$ $x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$                                                                                                                           |
|                |                                                                                                                                                | $x_c = -\frac{1}{2}x_\alpha - \frac{\sqrt{3}}{2}x_\beta$                                                                                                                                       |

| Transform    | Description                                                                                                                                    | Equations                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Inverse Park | Converts an orthogonal rotating<br>reference frame $(d, q)$ into<br>balanced two-phase orthogonal<br>stationary quantities $(\alpha, \beta)$ . | $x_{\alpha} = x_d \cos \theta_e - x_q \sin \theta_e$ $x_{\beta} = x_d \sin \theta_e + x_q \cos \theta_e$ |

The transforms use these variables.

| $\omega_m$ | Rotor speed              |
|------------|--------------------------|
| Р          | Rotor pole pairs         |
| $\omega_e$ | Rotor electrical speed   |
| $\Theta_e$ | Rotor electrical angle   |
| x          | Phase current or voltage |

### Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge.

The block uses these equations.

| Load power                                         | $Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$                           |
|----------------------------------------------------|--------------------------------------------------------------------|
| Source power                                       | $Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$                                |
| DC bus current                                     | $i_{bus} = \frac{Src_{Pwr}}{v_{bus}}$                              |
| Estimated rotor torque                             | $T_e = 1.5 P[\psi_d i_q - \psi_q i_d]$                             |
| Power loss for single efficiency source to load    | $Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$                |
| Power loss for single efficiency<br>load to source | $Pwr_{Loss} = \frac{100 - Eff}{100} \cdot \left  Ld_{Pwr} \right $ |

| Power loss for tabulated |                                          |
|--------------------------|------------------------------------------|
| efficiency               | $Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$ |

The equations use these variables.

| $v_a$ , $v_b$ , $v_c$           | Stator phase a, b, c voltages                     |
|---------------------------------|---------------------------------------------------|
| $v_{bus}$                       | Estimated DC bus voltage                          |
| $i_a$ , $i_b$ , $i_c$           | Stator phase a, b, c currents                     |
| i <sub>bus</sub>                | Estimated DC bus current                          |
| Eff                             | Overall inverter efficiency                       |
| $\omega_m$                      | Rotor mechanical speed                            |
| $L_q$ , $L_d$                   | q- and $d$ -axis winding inductance, respectively |
| $\Psi_{q}, \Psi_{d}$            | q- and $d$ -axis magnet flux, respectively        |
| i <sub>q</sub> , i <sub>d</sub> | q- and d-axis current, respectively               |
| λ                               | Permanent magnet flux linkage                     |
| Р                               | Rotor pole pairs                                  |

## **Electrical Losses**

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

| Setting                          | Block Implementation                                                       |
|----------------------------------|----------------------------------------------------------------------------|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for inverter efficiency. |
| Tabulated loss data              | Electrical loss calculated as a function of motor speeds and load torques. |

| Setting                      | Block Implementation                                                                                                                                                                  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Tabulated efficiency<br>data | Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.                                                                             |  |
|                              | • Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.                                                                                |  |
|                              | • Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.                                                   |  |
|                              | • Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. |  |
|                              | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                |  |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

## Ports

### Input

### SpdReq — Rotor speed command

scalar

Rotor speed command,  $\omega^*_m$ , in rad/s.

### Dependencies

To create this port, select Speed Control for the Control Type parameter.

## TrqCmd — Torque command scalar

Torque command, T\*, in N.m.

### Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — DC bus voltage
scalar

DC bus voltage,  $v_{bus}$ , in V.

PhaseCurrA - Current
scalar

Stator current phase a,  $i_a$ , in A.

PhaseCurrB — Current scalar

Stator current phase b,  $i_b$ , in A.

SpdFdbk — Rotor speed
scalar

Rotor speed,  $\omega_m$ , in rad/s.

### PosFdbk — Rotor electrical angle

scalar

Rotor electrical angle,  $\Theta_m$ , in rad.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal  | Description  | Units |
|---------|--------------|-------|
| SrcPwr  | Source power | W     |
| LdPwr   | Load power   | W     |
| PwrLoss | Power loss   | W     |

| Signal    | Description            | Units |
|-----------|------------------------|-------|
| MtrTrqEst | Estimated motor torque | N.m   |

### BusCurr – Bus current

scalar

Estimated DC bus current,  $i_{bus}$ , in A.

PhaseVolt — Stator terminal voltages array

Stator terminal voltages,  $V_a$ ,  $V_b$ , and  $V_c$ , in V.

## **Parameters**

**Block Options** 

```
Control Type — Select control
```

Speed Control (default) | Torque Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

| Port Configuration | Creates Ports |
|--------------------|---------------|
| Speed Control      | SpdReq        |
| Torque Control     | TrqCmd        |

### **Motor Parameters**

Number of pole pairs, PolePairs — Poles scalar

Motor pole pairs, *P*.

Vector of d-axis current breakpoints, id\_index — Current
vector

*d*-axis current,  $i_{d index}$ , in A.

Vector of q-axis current breakpoints, iq\_index — current
vector

*q*-axis current,  $i_{q index}$ , in A.

Corresponding d-axis flux, lambda\_d — Flux
vector

*d*-axis flux,  $\lambda_d$ , in Wb.

Corresponding q-axis flux, lambda\_q — Flux
vector

*q*-axis flux,  $\lambda_q$ , in Wb.

### **Current Controller**

Sample time for the torque control, Tst - Time
scalar

Torque control sample time,  $T_{st}$ , in s.

# D-axis proportional gain, Kp\_d — Gain scalar

d-axis proportional gain,  $Kp_d$ , in V/A.

## Q-axis proportional gain, Kp\_q — Gain

scalar

*q*-axis proportional gain,  $Kp_q$ , in V/A.

# D-axis integral gain, Ki\_d — Gain scalar

*d*-axis integral gain,  $Ki_d$ , in V/A\*s.

# **Q-axis integral gain, Ki\_q — Gain** scalar

*q*- axis integral gain,  $Ki_q$ , in V/A\*s.

Vector of speed breakpoints, wpb — Breakpoints
vector

```
Speed breakpoints, \omega_{bp}, in rad/s.
```

# Vector of torque breakpoints, tpb — Breakpoints vector

Torque breakpoints,  $T_{bp}$ , in N·m.

Corresponding d-axis current reference, id\_ref - Current
vector

*d*-axis reference current,  $i_{dref}$ , in A.

Corresponding q-axis current reference, iq\_ref — Current
vector

*q*-axis reference current,  $i_{qref}$ , in A.

**Speed Controller** 

Sample time for the motion control, Tsm — Time scalar

Sample time for the motion controller,  $T_{sm}$ , in s.

### Dependencies

To enable this parameter, for the **Control Type** parameter, select Speed Control.

Speed time constant, Ksf - Time
scalar

Speed regulator time constant,  $K_{sf}$ , in 1/s.

### Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

# Proportional gain, Kp\_w - Gain scalar

Proportional gain,  $Kp_{\omega}$ , in N.m/(rad/s).

### Dependencies

To enable this parameter, for the Control Type parameter, select Speed Control.

# Integral gain, Ki\_w - Gain scalar

Integral gain,  $Ki_{\omega}$  N·m/rad.

### Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed** Control.

Inertia compensation, Jcomp - Inertia
scalar

Inertia compensation, in kg\*m^2.

### Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed** Control.

## Static friction, Fs — Friction

scalar

Static friction, in N.m.

### Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed Control**.

### Viscous damping compensation, Fv — Dampint

scalar

Viscous damping compensation, in N.m/(rad/s).

### Dependencies

To enable this parameter, for the **Control Type** parameter, select **Speed** Control.

### **Electrical Losses**

### Parameterize losses by — Select type

```
Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data
```

| Setting                          | Block Implementation                                                                                                                                                                  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for inverter efficiency.                                                                                                            |
| Tabulated loss data              | Electrical loss calculated as a function of motor speeds and load torques.                                                                                                            |
| Tabulated efficiency<br>data     | Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.                                                                             |
|                                  | • Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.                                                                                |
|                                  | • Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.                                                   |
|                                  | • Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. |
|                                  | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

### Overall inverter efficiency, eff - Constant

scalar

Overall inverter efficiency, *Eff*, in %.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Vector of speeds (w) for tabulated loss, w\_loss\_bp — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

**Vector of torques (T) for tabulated loss, T\_loss\_bp — Breakpoints** 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in N.m.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

### Corresponding losses, losses\_table — Table

M-by-N matrix

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

# **Vector of speeds (w) for tabulated efficiency, w\_eff\_bp — Breakpoints** 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

# Vector of torques (T) for tabulated efficiency, T\_eff\_bp — Breakpoints

1-by-N matrix

Torque breakpoints for lookup table when calculating efficiency, in N.m.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

### **Corresponding efficiency, efficiency\_table — Table** M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

### References

- [1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. "High fidelity nonlinear IPM modeling based on measured stator winding flux linkage." *IEEE Transactions on Industry Applications*, Vol. 51, No. 4, July/August 2015.
- [2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. "A High-Fidelity and Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect." *IEEE Transactions on Industrial Electronics*, Vol. 62, No. 7, July 2015.

## See Also

Flux-Based PMSM | IM Controller | Interior PM Controller | Surface Mount PM Controller

### **Topics**

"Generate Parameters for Flux-Based Blocks"

### Introduced in R2017b

## **Heat Exchanger**

Intercooler or exhaust gas recirculation (EGR) cooler Library: Propulsion / Combustion Engine Components / Fundamental Flow



## Description

The Heat Exchanger block models a heat exchanger, for example, an intercooler or exhaust gas recirculation (EGR) cooler. The inlet (port C) connects to an engine flow component (flow restriction, compressor, turbine, or engine block). The outlet (port B) connects to a volume (control volume or environment). Based on the upstream temperature, heat exchanger effectiveness, and cooling medium temperature, the block determines the heat transfer rate and downstream temperature.

For the heat exchanger effectiveness and cooling medium temperature, you can specify either a constant value or an external input. For example, if you specify a heat exchanger effectiveness that is:

- Equal to 1, the downstream temperature is equal to the cooling medium temperature.
- Equal to 0, there is no heat transfer to the cooling medium. The downstream temperature is equal to the upstream temperature.

The block assumes no pressure drop. To model pressure losses, use a Flow Restriction block.

## **Equations**

The Heat Exchanger block implements equations that use these variables.

| $T_{upstr}$        | Upstream temperature       |
|--------------------|----------------------------|
| T <sub>dnstr</sub> | Downstream temperature     |
| T <sub>cool</sub>  | Cooling medium temperature |

| Turnet                                | Constant cooling medium temperature       |
|---------------------------------------|-------------------------------------------|
| T <sub>cool.input</sub>               | External input cooling medium temperature |
| ε                                     | Heat exchanger effectiveness              |
| $\varepsilon_{cnst}$                  | Constant heat exchanger effectiveness     |
| £:                                    | Input heat exchanger effectiveness        |
| c c c c c c c c c c c c c c c c c c c | Specific heat at constant pressure        |
| c <sub>p</sub>                        | Heat exchanger heat transfer rate         |
| <i>Yht</i>                            | Pressure at inlet                         |
| $p_{flw,in}$                          | Pressure at outlet                        |
| $p_{vol,out}$                         | Tressure at outlet                        |
| $T_{vol.out}$                         | Temperature at outlet                     |
| h                                     | Specific enthalpy at outlet               |
| a.                                    | Heat flow rate at inlet                   |
| q <sub>in</sub>                       | Heat flow rate at outlet                  |
| Y <sub>out</sub>                      | Heat exchanger mass flow rate             |
| <i>m</i>                              | Temperature at inlet                      |
| T <sub>flw,in</sub>                   | Heat exchanger inlet temperature          |
| T <sub>in</sub>                       | Heat exchanger outlet temperature         |
| T <sub>out</sub>                      | meat exchanger outlet temperature         |
| $h_{in}$                              | Inlet specific enthalpy                   |

Heat exchanger effectiveness measures the effectiveness of heat transfer from the incoming hot fluid to the cooling medium:

$$\varepsilon = \frac{T_{upstr} - T_{dnstr}}{T_{upstr} - T_{cool}}$$

In an ideal heat exchanger, the downstream temperature equals the cooling temperature. The effectiveness is equal to 1.

$$T_{dnstr} = T_{cool}$$
  
$$\varepsilon = 1$$

The Heat Exchanger block uses the effectiveness to determine the downstream temperature and heat transfer rate.

$$\begin{split} T_{dnstr} &= T_{upstr} - \varepsilon \left( T_{upstr} - T_{cool} \right) \\ q_{ht} &= \dot{m}c_p \left( T_{upstr} - T_{dnstr} \right) \end{split}$$

Since the block assumes no pressure drop,  $P_{flw,in} = P_{vol,out}$ .

The flow component connection to the heat exchanger inlet determines the direction of the mass flow. Based on the mass flow rate direction, these temperature and heat flow equations apply.

| Fluid Flow                                                     | Mass Flow Rate | Temperatures and Heat Flow                                                                                                      |
|----------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| Forward — From<br>engine flow<br>component to outlet<br>volume | <i>ṁ</i> ≥ 0   | $\begin{split} T_{upstr} &= T_{flw,in} \\ T_{in} &= T_{upstr} \\ T_{out} &= T_{dnstr} \\ q_{out} &= mc_p T_{dnstr} \end{split}$ |

| Fluid Flow                                                     | Mass Flow Rate | Temperatures and Heat Flow                                                                                                     |
|----------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------|
| Reverse — From<br>outlet volume to<br>engine flow<br>component | <i>ṁ</i> < 0   | $T_{upstr} = T_{vol,out}$ $T_{in} = T_{dnstr}$ $T_{out} = T_{vol,out}$ $h_{in} = c_p T_{dnstr}$ $q_{out} = \dot{m}h_{vol,out}$ |

## Ports

## Input

 $\mathbf{C}$  — Inlet mass flow rate, heat flow rate, temperature, mass fractions two-way connector port

Bus containing the heat exchanger:

- MassFlwRate Mass flow rate at inlet,  $\dot{m}$ , in kg/s
- HeatFlwRate Heat flow rate at inlet,  $q_{in}$ , in J/s
  - **Temp** Temperature at inlet,  $T_{flw,in}$ , in K
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide

- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

### **B** — Outlet volume pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the heat exchanger:

- $Prs Pressure at outlet, p_{vol.out}$ , in Pa
- **Temp** Temperature at outlet,  $T_{vol.out}$ , in K
- ٠
- Enth Specific enthalpy at outlet,  $h_{vol,out}$ , in J/kg
- MassFrac Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

Effct — Heat exchanger effectiveness scalar

Heat exchanger effectiveness,  $\varepsilon_{input}$  .

### Dependencies

To create this port, select External input for the Effectiveness model parameter.

### CoolTemp — Cooling medium temperature

scalar

Cooling medium temperature,  $T_{cool,input}$ .

### Dependencies

To create this port, select External input for the **Cooling medium temperature input** parameter.

### Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal         | Description                       | Units |
|----------------|-----------------------------------|-------|
| InletTemp      | Heat exchanger inlet temperature  | К     |
| OutletTemp     | Heat exchanger outlet temperature | К     |
| HeatTrnsfrRate | Heat exchanger heat transfer rate | J/s   |

## C — Inlet flow pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the heat exchanger:

- $Prs Pressure at inlet, p_{flw,in}$ , in Pa
- $\mathsf{Temp} \mathsf{Temperature}$  at inlet,  $T_{in}$ , in K
- Enth Specific enthalpy at inlet,  $h_{in}$ , in J/kg
- MassFrac Inlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

# **B** — **Outlet volume mass flow rate, heat flow rate, temperature, mass fractions** two-way connector port

Bus containing the heat exchanger:

- MassFlwRate Mass flow rate at outlet,  $\dot{m}$ , in kg/s
- HeatFlwRate Heat flow rate at outlet,  $q_{out}$ , in J/s

Temp — Temperature at outlet,  $T_{out}$ , in K

• MassFrac — Outlet mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide

- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

## **Parameters**

### **Block Options**

#### **Effectiveness model — Model type for heat effectiveness** Constant (default) | External input

Type of model to calculate the heat exchanger effectiveness.

### Dependencies

- Selecting External input creates the Effct port.
- Selecting Constant enables the Heat exchanger effectiveness, ep\_cnst parameter.

### Cooling medium temperature input — Specify type

Constant (default) | External input

Cooling medium temperature input.

### Dependencies

- Selecting External input creates the CoolTemp port.
- Selecting Constant enables the Cooling medium temperature, T\_cool\_cnst parameter.

### Image type — Icon color

Intercooler (default) | EGR cooler

Block icon color:

- Intercooler for blue, to indicate an intercooler
- EGR cooler for red, to indicate exhaust-gas-recirculation (EGR) cooling

# Heat exchanger effectiveness, ep\_cnst — Effectiveness scalar

Constant heat exchanger effectiveness,  $\varepsilon_{cnst}$  .

### Dependencies

To enable this parameter, select Constant for the Effectiveness model parameter.

```
Cooling medium temperature, T_cool_cnst — Temperature
scalar
```

Constant cooling medium temperature,  $T_{cool.cnst}$ , in K.

### Dependencies

To enable this parameter, select Constant for the Cooling medium temperature input parameter.

# Specific heat at constant pressure, cp — Specific heat scalar

Specific heat at constant pressure,  $c_p$ , in J/(kg\*K).

### References

[1] Eriksson, Lars and Nielsen, Lars. *Modeling and Control of Engines and Drivelines*. Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2014.

## See Also

Control Volume System | Flow Restriction

### Introduced in R2017a

## **Mapped Motor**

Mapped motor and drive electronics operating in torque-control mode Library: Propulsion / Electric Motors



## Description

The Mapped Motor block implements a mapped motor and drive electronics operating in torque-control mode. The output torque tracks the torque reference demand and includes a motor-response and drive-response time constant. Use the block for fast system-level simulations when you do not know detailed motor parameters, for example, for motor power and torque tradeoff studies. The block assumes that the speed fluctuations due to mechanical load do not affect the motor torque tracking.

You can specify:

- Port configuration Input torque or speed
- Electrical torque range Torque speed envelope or maximum motor power and torque
- Electrical loss Single operating point, measured efficiency, or measured loss

## **Electrical Torque**

To specify the range of torque and speed that the block allows, on the **Electrical Torque** tab, for **Parametrized by**, select one of these options.

| Setting                         | Block Implementation                                                                   |
|---------------------------------|----------------------------------------------------------------------------------------|
| Tabulated torque-speed envelope | Range specified as a set of speed data points and corresponding maximum torque values. |
| Maximum torque and power        | Range specified with maximum torque and maximum power.                                 |

For either method, the block implements an envelope similar to this.



### **Electrical Losses**

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

| Setting                          | Block Implementation                                                                                                                                   |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Single efficiency<br>measurement | Sum of these terms, measured at a single measurement point:                                                                                            |  |
|                                  | • Fixed losses independent of torque and speed, $P_0$ . Use $P_0$ to account for fixed converter losses.                                               |  |
|                                  | • A torque-dependent electrical loss $k\tau^2$ , where k is a constant and $\tau$ is the torque. Represents ohmic losses in the copper windings.       |  |
|                                  | • A speed-dependent electrical loss $k_w \omega^2$ , where $k_w$ is a constant and $\omega$ is the speed. Represents iron losses due to eddy currents. |  |
| Tabulated loss data              | Loss lookup table that is a function of motor speeds and load torques.                                                                                 |  |

| Setting                      | Block Implementation                                                                                                                                                                  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabulated efficiency<br>data | Efficiency lookup table that is a function of motor speeds and load torques:                                                                                                          |
|                              | • Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.                                                                                |
|                              | • Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.                                                   |
|                              | • Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. |
|                              | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

### **Battery Current**

The block calculates the battery current using the mechanical power, power loss, and battery voltage. Positive current indicates battery discharge. Negative current indicates battery charge.

 $BattAmp = \frac{MechPwr + PwrLoss}{BattVolt}$ 

The equation uses these variables.

*BattVolt* Battery voltage

MechPwr Mechanical power

PwrLoss Power loss

*BattCurr* Battery current

## Ports

## Input

BattVolt — Battery voltage scalar

Battery voltage, *BattVolt*, in V.

```
TrqCmd — Commanded motor torque
scalar
```

Commanded motor torque,  $Trq_{cmd}$ , in N·m.

### Dependencies

To create this input port, for the **Port configuration**, select **Torque**.

# MtrSpd — Motor output shaft speed scalar

Motor shaft speed,  $Mtr_{spd}$ , in rad/s.

### Dependencies

To create this input port, for the **Port configuration**, select Speed.

### Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal  | Description                            | Units |
|---------|----------------------------------------|-------|
| MechPwr | Mechanical power                       | W     |
| PwrLoss | Internal inverter and motor power loss | W     |

# BattCurr — Battery current scalar

Battery current draw or demand,  $I_{batt}$ , in A.

## MtrTrq — Motor torque

scalar

Motor output shaft torque,  $Mtr_{trq}$ , in N·m.

### MtrSpd — Motor shaft speed

scalar

Motor shaft speed, *Mtr<sub>spd</sub>*, in rad/s.

### Dependencies

To create this output port, for the **Port configuration**, select **Torque**.

## **Parameters**

### **Block Options**

### Port configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

| Port Configuration | Creates Ports   |
|--------------------|-----------------|
| Torque             | Outpost Mt rSpd |
| Speed              | Input MtrSpd    |

### **Electrical Torque**

### Parameterized by — Select type

Tabulated torque-speed envelope (default) | Maximum torque and power

| Setting                            | Block Implementation                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------|
| Tabulated torque-speed<br>envelope | Range specified as a set of speed data points and corresponding maximum torque values. |
| Maximum torque and power           | Range specified with maximum torque and maximum power.                                 |



For either method, the block implements an envelope similar to this.

## Vector of rotational speeds, w\_t - Rotational speeds vector

Rotational speeds for permissible steady-state operation, in rad/s. To avoid poor performance due to an infinite slope in the torque-speed curve, specify a vector of rotational speeds that does not contain duplicate consecutive values.

### Dependencies

To create this parameter, for the **Parameterized by** parameter, select **Tabulated** torque-speed envelope.

## Vector of maximum torque values, T\_t - Torque

vector

Maximum torque values for permissible steady state, in  $N{\cdot}m.$ 

### Dependencies

To create this parameter, for the **Parameterized by** parameter, select **Tabulated** torque-speed envelope.

Maximum torque, torque\_max — Torque
scalar

The maximum permissible motor torque, in N·m.

### Dependencies

To create this parameter, for the **Parameterized by** parameter, select Maximum torque and power.

Maximum power, power\_max - Power
scalar

The maximum permissible motor power, in W.

### Dependencies

To create this parameter, for the **Parameterized by** parameter, select Maximum torque and power.

### Torque control time constant, Tc — Time constant

scalar

Time constant with which the motor driver tracks a torque demand, in s.

### **Electrical Losses**

### Parameterize losses by — Select type

```
Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data
```

| Setting                          | Block Implementation                                                                                                                                   |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single efficiency<br>measurement | Sum of these terms, measured at a single measurement point:                                                                                            |
|                                  | • Fixed losses independent of torque and speed, $P_0$ . Use $P_0$ to account for fixed converter losses.                                               |
|                                  | • A torque-dependent electrical loss $k\tau^2$ , where k is a constant and $\tau$ is the torque. Represents ohmic losses in the copper windings.       |
|                                  | • A speed-dependent electrical loss $k_w \omega^2$ , where $k_w$ is a constant and $\omega$ is the speed. Represents iron losses due to eddy currents. |
| Tabulated loss data              | Loss lookup table that is a function of motor speeds and load torques.                                                                                 |

| Setting                      | Block Implementation                                                                                                                                                                  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tabulated efficiency<br>data | Efficiency lookup table that is a function of motor speeds and load torques:                                                                                                          |
|                              | • Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.                                                                                |
|                              | • Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.                                                   |
|                              | • Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. |
|                              | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

### Motor and drive overall efficiency, eff — Efficiency

scalar

The block defines overall efficiency as:

$$\eta = 100 \frac{\tau_0 \omega_0}{\tau_0 \omega_0 + P_0 + k \tau_0^2 + k_w \omega_0^2}$$

The equation uses these variables.

- $\tau_0$ Torque at which efficiency is measured $\omega_0$ Speed at which efficiency is measured
- $P_0$  Fixed losses independent of torque or speed

Torque-dependent electrical losses 
$$k\tau_0^2$$

### $k_w \omega^2$ Speed-dependent iron losses

At initialization, the block solves the efficiency equation for k. The block neglects losses associated with the rotor damping.

### Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

# Speed at which efficiency is measured, w\_eff — Speed scalar

Speed at which efficiency is measured, in rad/s.

### Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

# **Torque at which efficiency is measured, T\_eff — Torque** scalar

Torque at which efficiency is measured, in  $N \cdot m$ .

### Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

### Iron losses, Piron — Power

scalar

Iron losses at the speed and torque at which efficiency is defined, in W.

### Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

# Fixed losses independent of torque and speed, Pbase - Power scalar

Fixed electrical loss associated with the driver when the motor current and torque are zero, in W.

### Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Single efficiency measurement.

Vector of speeds (w) for tabulated losses, w\_eff\_bp — Breakpoints [1  $\times$  m] vector

Speed breakpoints for lookup table when calculating losses, in rad/s. Array dimensions are 1 by the number of speed breakpoints, m.

### Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Tabulated loss data or Tabulated efficiency data

Vector of torques (T) for tabulated losses, T\_eff\_bp — Breakpoints  $[1 \ \times \ n]$  vector

Torque breakpoints for lookup table when calculating losses, in N·m. Array dimensions are 1 by the number of torque breakpoints, n.

### Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Tabulated loss data or Tabulated efficiency data

### Corresponding losses, losses\_table — Table

[m x n] array

Array of values for electrical losses as a function of speed and torque, in W. Each value specifies the losses for a specific combination of speed and torque. The [mxn] array dimensions must match the speed, m, and torque, n, breakpoint vector dimensions.

### Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Tabulated loss data.

### Corresponding efficiency, efficiency\_table — Table

[m x n] array

Array of efficiency as a function of speed and torque, in %. Each value specifies the losses for a specific combination of speed and torque. The [mxn] array dimensions must match the speed, m, and torque, n, breakpoint vector dimensions.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

### Dependencies

To create this parameter, for the **Parameterize losses by** parameter, select Tabulated efficiency data.

### Mechanical

Rotational inertia, J — Inertia scalar

Rotor resistance to change in motor motion, in kg\*m<sup>2</sup>. The value can be zero.

### Dependencies

To create this parameter, for the **Port configuration** parameter, select **Torque**.

### Rotor damping, b — Damping

scalar

Rotor damping, in  $N \cdot m/(rad/s)$ . The value can be zero.

### Dependencies

To create this parameter, for the **Port configuration** parameter, select **Torque**.

### Initial rotor speed, omega\_o - Speed

scalar

Rotor speed at the start of the simulation, in rad/s.

### Dependencies

To create this parameter, for the **Port configuration** parameter, select **Torque**.

## See Also

Flux-Based PMSM | Induction Motor | Interior PMSM | Surface Mount PMSM

Introduced in R2017a

## **Induction Motor**

Three-phase induction motor Library: Propulsion / Electric Motors



## Description

The Induction Motor block implements a three-phase induction motor. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

## **Three-Phase Sinusoidal Model Electrical System**

The block implements equations that are expressed in a stationary rotor reference (qd) frame. The d-axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.


The block uses these equations to calculate the electrical speed ( $\omega_{em}$ ) and slip speed ( $\omega_{slip}$ ).

$$\omega_{em} = P\omega_m$$
$$\omega_{slip} = \omega_{syn} - \omega_{em}$$

To calculate the dq rotor electrical speed with respect to the rotor A-axis (dA), the block uses the difference between the stator a-axis (da) speed and slip speed:

$$\omega_{dA} = \omega_{da} - \omega_{em}$$

To simplify the equations for the flux, voltage, and current transformations, the block uses a stationary reference frame:

$$\begin{aligned} & \omega_{da} = 0 \\ & \omega_{dA} = -\omega_{em} \end{aligned}$$

| Calculation                                                                                    | Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flux                                                                                           | $\frac{d}{dt} \begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \end{bmatrix} = \begin{bmatrix} v_{sd} \\ v_{sq} \end{bmatrix} - R_s \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} - \omega_{da} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \end{bmatrix}$ $\frac{d}{dt} \begin{bmatrix} \lambda_{rd} \\ \lambda_{rq} \end{bmatrix} = \begin{bmatrix} v_{rd} \\ v_{rq} \end{bmatrix} - R_r \begin{bmatrix} i_{rd} \\ i_{rq} \end{bmatrix} - \omega_{dA} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_{rd} \\ \lambda_{rq} \end{bmatrix}$ |
|                                                                                                | $\begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \\ \lambda_{rd} \\ \lambda_{rq} \end{bmatrix} = \begin{bmatrix} L_s & 0 & L_m & 0 \\ 0 & L_s & 0 & L_m \\ L_m & 0 & L_r & 0 \\ 0 & L_m & 0 & L_r \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{rd} \\ i_{rq} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                              |
| Current                                                                                        | $\begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{rd} \\ i_{rq} \end{bmatrix} = \begin{pmatrix} 1 \\ L_m^2 - L_r L_s \end{pmatrix} \begin{bmatrix} -L_r & 0 & L_m & 0 \\ 0 & -L_r & 0 & L_m \\ L_m & 0 & -L_s & 0 \\ 0 & L_m & 0 & -L_s \end{bmatrix} \begin{bmatrix} \lambda_{sd} \\ \lambda_{sq} \\ \lambda_{rd} \\ \lambda_{rq} \end{bmatrix}$                                                                                                                                                                                                                                                                       |
| Inductance                                                                                     | $ \begin{array}{c} L_s = L_{ls} + L_m \\ L_r = L_{lr} + L_m \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Electromagnetic torque                                                                         | $T_e = PL_m(i_{sq}i_{rd} - i_{sd}i_{rq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Power invariant dq transformation<br>to ensure that the dq and three<br>phase powers are equal | $\begin{bmatrix} v_{sd} \\ v_{sq} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\Theta_{da}) & \cos(\Theta_{da} - \frac{2\pi}{3}) & \cos(\Theta_{da} + \frac{2\pi}{3}) \\ -\sin(\Theta_{da}) & -\sin(\Theta_{da} - \frac{2\pi}{3}) & -\sin(\Theta_{da} + \frac{2\pi}{3}) \end{bmatrix} \begin{bmatrix} v_d \\ v_d \\ v_d \end{bmatrix}$                                                                                                                                                                                                                                                             |
|                                                                                                | $\begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\Theta_{da}) & -\sin(\Theta_{da}) \\ \cos(\Theta_{da} - \frac{2\pi}{3}) & -\sin(\Theta_{da} - \frac{2\pi}{3}) \\ \cos(\Theta_{da} + \frac{2\pi}{3}) & -\sin(\Theta_{da} + \frac{2\pi}{3}) \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix}$                                                                                                                                                                                                                                                            |

The equations use these variables.

| $\omega_m$                        | Angular velocity of the rotor                               |
|-----------------------------------|-------------------------------------------------------------|
| $\omega_{em}$                     | Electrical rotor speed                                      |
| $\omega_{slip}$                   | Electrical rotor slip speed                                 |
| $\omega_{syn}$                    | Synchronous rotor speed                                     |
| $\omega_{da}$                     | dq stator electrical speed with respect to the rotor a-axis |
| $\omega_{dA}$                     | dq stator electrical speed with respect to the rotor A-axis |
| $\Theta_{da}$                     | dq stator electrical angle with respect to the rotor a-axis |
| $\Theta_{dA}$                     | dq stator electrical angle with respect to the rotor A-axis |
| $L_q$ , $L_d$                     | q- and d-axis inductances                                   |
| $L_s$                             | Stator inductance                                           |
| $L_r$                             | Rotor inductance                                            |
| $L_m$                             | Magnetizing inductance                                      |
| $L_{ls}$                          | Stator leakage inductance                                   |
| $L_{lr}$                          | Rotor leakage inductance                                    |
| $v_{sq}$ , $v_{sd}$               | Stator q- and d-axis voltages                               |
| $i_{sq}$ , $i_{sd}$               | Stator q- and d-axis currents                               |
| $\lambda_{sq}$ , $\lambda_{sd}$   | Stator q- and d-axis flux                                   |
| i <sub>rq</sub> , i <sub>rd</sub> | Rotor q- and d-axis currents                                |
| $\lambda_{rq}$ , $\lambda_{rd}$   | Rotor q- and d-axis flux                                    |
| $v_a$ , $v_b$ , $v_c$             | Stator voltage phases a, b, c                               |
| $i_a$ , $i_b$ , $i_c$             | Stator currents phases a, b, c                              |
| $R_s$                             | Resistance of the stator windings                           |
| $R_r$                             | Resistance of the rotor windings                            |
| Р                                 | Number of pole pairs                                        |
| $T_e$                             | Electromagnetic torque                                      |
|                                   |                                                             |

## Mechanical System

The rotor angular velocity is given by:

$$\begin{split} & \frac{d}{dt}\omega_m = \frac{1}{J} \big( T_e - T_f - F \omega_m - T_m \big) \\ & \frac{d\theta_m}{dt} = \omega_m \end{split}$$

The equations use these variables.

| J          | Combined inertia of rotor and load          |
|------------|---------------------------------------------|
| F          | Combined viscous friction of rotor and load |
| $\theta_m$ | Rotor mechanical angular position           |
| $T_m$      | Rotor shaft torque                          |
| $T_e$      | Electromagnetic torque                      |
| $T_f$      | Rotor shaft static friction torque          |
| $\omega_m$ | Angular mechanical velocity of the rotor    |

## Ports

### Input

### LdTrq — Rotor shaft torque

scalar

Rotor shaft input torque,  $T_m$ , in N.m.

#### Dependencies

To create this port, select Torque for the Port configuration parameter.

#### Spd — Rotor shaft speed

scalar

Angular velocity of the rotor,  $\omega_m$ , in rad/s.

#### Dependencies

To create this port, select Speed for the Port configuration parameter.

#### PhaseVolt — Stator terminal voltages

vector

Stator terminal voltages,  $V_a$ ,  $V_b$ , and  $V_c$ , in V.

## Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal   | Description                   | Variable        | Units |
|----------|-------------------------------|-----------------|-------|
| IaStator | Stator phase current A        | i <sub>a</sub>  | А     |
| IbStator | Stator phase current B        | i <sub>b</sub>  | А     |
| IcStator | Stator phase current C        | i <sub>c</sub>  | А     |
| IdSta    | Direct axis current           | i <sub>sd</sub> | А     |
| IqSta    | Quadrature axis current       | i <sub>sq</sub> | А     |
| VdSta    | Direct axis voltage           | v <sub>sd</sub> | V     |
| VqSta    | Quadrature axis voltage       | v <sub>sq</sub> | V     |
| MtrSpd   | Angular velocity of the rotor | $\omega_m$      | rad/s |
| MtrPos   | Rotor angular position        | $\theta_m$      | rad   |
| MtrTrq   | Electromagnetic torque        | T <sub>e</sub>  | N.m   |

## **Parameters**

#### Configuration

## Port configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

| Port Configuration | Creates Ports |
|--------------------|---------------|
| Torque             | PhaseV        |
|                    | Info          |
|                    | LdTrq         |
| Speed              | PhaseV        |
|                    | Info          |
|                    | Spd           |

# Stator resistance and leakage inductance, Zs — Resistance and inductance

vector

Stator resistance,  $R_s$ , in ohms and leakage inductance,  $L_{ls}$ , in H.

# **Rotor resistance and leakage inductance, Zr — Resistance and inductance** vector

Rotor resistance,  $R_r$ , in ohms and leakage inductance,  $L_{lr}$ , in H.

#### Magnetizing inductance, Lm — Inductance

scalar

Magnetizing inductance,  $L_m$ , in H.

# Number of pole pairs, P — Pole pairs scalar

Motor pole pairs, *P*.

# Initial mechanical position, theta\_init — Angular position scalar

Initial rotor angular position,  $\theta_{m0}$ , in rad.

Initial mechanical speed, omega\_init — Angular speed
scalar

Initial angular velocity of the rotor,  $\omega_{m0}$ , in rad/s.

#### Dependencies

To enable this parameter, select Torque for the **Port configuration**.

# Physical inertia, viscous damping, static friction, mechanical — Inertia, damping, friction

vector

Mechanical properties of the rotor:

- Inertia, J, in kgm<sup>2</sup>
- Viscous damping, *F*, in N.m/(rad/s)
- Static friction, *T<sub>f</sub>*, in N.m

#### Dependencies

To enable this parameter, select Torque for the **Port configuration**.

## References

[1] Mohan, Ned. Advanced Electric Drives: Analysis, Control and Modeling Using Simulink. Minneapolis, MN: MNPERE, 2001.

## See Also

Flux-Based PMSM | IM Controller | Interior PMSM | Mapped Motor | Surface Mount PMSM

#### Introduced in R2017a

# **IM Controller**

Internal torque-based, field-oriented controller for an induction motor with an optional outer-loop speed controller

Library: Propulsion / Electric Motor Controllers



## Description

The IM Controller block implements an internal torque-based, field-oriented controller for an induction motor (IM) with an optional outer-loop speed controller. The torque control implements a strategy to control the motor flux. You can specify either speed or torque control.

The IM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.



The block implements equations that use these variables.

| ω                       | Rotor speed                                                                                                                   |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\omega^*$              | Rotor speed command                                                                                                           |
| $T^*$                   | Torque command                                                                                                                |
| i <sub>d</sub>          | d-axis current                                                                                                                |
| $i_d^*$                 | d-axis current command                                                                                                        |
| i <sub>q</sub>          | q-axis current                                                                                                                |
| <i>i</i> * <sub>q</sub> | q-axis current command                                                                                                        |
| $v_d$ ,                 | d-axis voltage                                                                                                                |
| $v_d^*$                 | d-axis voltage command                                                                                                        |
| $v_q$                   | q-axis voltage                                                                                                                |
| $v_q^*$                 | q-axis voltage command                                                                                                        |
| $v_a$ , $v_b$ , $v_c$   | Stator phase a, b, c voltages $% \left( $ |
| $i_a$ , $i_b$ , $i_c$   | Stator phase a, b, c currents                                                                                                 |

## **Speed Controller**

To implement the speed controller, select the **Control Type** parameter **Speed Control**. If you select the **Control Type** parameter **Torque Control**, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the IM Controller block.



The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the **Speed Controller** tab:

- To make the speed-command lag time negligible, specify a **Bandwidth of the state filter** parameter.
- To calculate a **Speed time constant, Ksf** gain based on the state filter bandwidth, select **Calculate Speed Regulator Gains**.

The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$$

The equation uses these variables.

 $EV_{sf}$  Bandwidth of the speed command filter

- $T_{sm}$  Motion controller sample time
- $K_{sf}$  Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the **Speed Controller** tab, select **Calculate Speed Regulator Gains** to compute:

- Proportional gain, ba
- Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value on the **Motor Parameter** tab.

| Calculation                                     | Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Discrete forms of<br>characteristic<br>equation | $z^{3} + \frac{\left(-3J_{p} + T_{s}b_{a} + T_{s}^{2}K_{sa} + T_{s}^{3}K_{isa}\right)}{J_{p}}z^{2} + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{\left(-3J_{p} - 2T_{s}$ | $\frac{-J_p + T_s b_a}{J_p}$                |
|                                                 | $(z - p_1)(z - p_2)(z - p_3) = z^3 + (p_1 + p_2 + p_3)z^2 + (p_1p_2 + p_2p_3 + p_13)z^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $p_{1}^{2} - p_{1}^{2} p_{2}^{2} p_{3}^{2}$ |
| Speed regulator<br>proportional gain            | $b_{a} = \frac{J_{p} - J_{p} p_{1} p_{2} p_{3}}{T_{sm}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |
| Speed regulator<br>integral gain                | $K_{sa} = \frac{J_p (p_1 p_2 + p_2 p_3 + p_3 p_1) - 3J_p + 2b_a T_{sm}}{T_{sm}^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |
| Speed regulator<br>double integral gain         | $K_{isa} = \frac{-J_p \left( p_1 + p_2 + p_3 \right) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |

The gains for the state feedback are calculated using these equations.

The equations use these variables.

- *P* Motor pole pairs
- *b<sub>a</sub>* Speed regulator proportional gain
- $K_{sa}$  Speed regulator integral gain

| K <sub>isa</sub> | $Speed\ regulator\ double\ integral\ gain$ |
|------------------|--------------------------------------------|
| $J_p$            | Motor inertia                              |
| $T_{sm}$         | Motion controller sample time              |

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting **Calculate Speed Regulator Gains** on the **Speed Controller** tab updates the inertia, viscous damping, and static friction with the **Physical inertia**, viscous **damping**, **static friction** parameter values on the **Motor Parameter** tab.

The feedforward torque command uses this equation.

$$T_{cmd_{-}ff} = J_p \dot{\omega}_m + F_v \omega_m + F_s \frac{\omega_m}{|\omega_m|}$$

The equation uses these variables.

| $J_p$          | Motor inertia                    |
|----------------|----------------------------------|
| $T_{cmd_{ff}}$ | Torque command feedforward       |
| $F_s$          | Static friction torque constant  |
| $F_{v}$        | Viscous friction torque constant |
| $F_s$          | Static friction torque constant  |
| $\omega_m$     | Rotor mechanical speed           |

## **Torque Determination**

The block uses a quadrature current to determine the base speed and the current commands. The motor ratings determine the rated electrical speed.

| Calculation      | Equations                                                                                                                                                            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current commands |                                                                                                                                                                      |
|                  |                                                                                                                                                                      |
|                  | $ \begin{split} i_{qref} &= \frac{T_{cmd}}{i_{sq\_0} \cdot P \cdot \left(\frac{L^2_{-m}}{L_r}\right)} \\ \text{If } & \omega_e  \leq \omega_{rated} \\ \end{split} $ |
|                  | $i_{dref}$ = $i_{sd\_0}$ Else                                                                                                                                        |
|                  | End $i_{dref} = rac{i_{sd\_0}}{ \omega_e }$                                                                                                                         |
| Inductance       |                                                                                                                                                                      |
|                  | $L_r = L_{lr} + L_m$                                                                                                                                                 |
|                  | $L_s = L_{ls} + L_m$                                                                                                                                                 |

The equations use these variables.

| <i>i<sub>dref</sub></i> | d-axis reference current       |
|-------------------------|--------------------------------|
| $i_{qref}$              | q-axis reference current       |
| $i_{sd\_0}$             | d-axis rated current           |
| $i_{sq\_0}$             | q-axis rated current           |
| $\omega_e$              | Rotor electrical speed         |
| $\omega_{rated}$        | Rated electrical speed         |
| $L_{lr}$                | Rotor leaking inductance       |
| $L_r$                   | Rotor winding inductance       |
| $L_{ls}$                | Stator leaking inductance      |
| $L_s$                   | Stator winding inductance      |
| $L_m$                   | Motor magnetizing inductance   |
| Р                       | Motor pole pairs               |
| $T_{cmd}$               | Commanded motor maximum torque |
|                         |                                |

## **Current Regulators**

The block regulates the current with an anti-windup feature. Classic proportionalintegrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- d-axis and q-axis current cross-coupling
- Back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of  $EV_{current}$ .

The block implements these equations.

| Calculation                                     | Equations                                                                                                                                                                                                                                                                         |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motor voltage, in the stator<br>reference frame |                                                                                                                                                                                                                                                                                   |
|                                                 | $\sigma = 1 - \frac{L_m^2}{L_s L_r}$ $v_{sd} = R_s i_{sd} + \sigma L_s \frac{di_{sd}}{L_s} + \frac{L_m}{L_s} \frac{d\lambda_{rd}}{L_s} - P\omega_m \sigma L_s i_{sq}$                                                                                                             |
| Current regulator gains                         | $\begin{aligned} & \frac{dt}{U_r} - \frac{dt}{dt} - \frac{L_r}{dt} \\ & \frac{dt}{\omega_b} = 2\pi E V_{current}} + \sigma L_s \frac{di_{sq}}{dt} + \omega_d \frac{L_m}{L_r} \frac{d\lambda_{rd}}{dt} + P\omega_m \sigma L_s i_{sd} \\ & K_n = \sigma L_d \omega_h \end{aligned}$ |
| Transfer functions                              | $ \frac{i_d}{i_{dref}} = \frac{\omega_b}{s + \omega_b} $ $ \frac{i_d}{i_d} = \frac{\omega_b}{s + \omega_b} $                                                                                                                                                                      |

The equations use these variables.  $s + \omega_b$ 

| $EV_{current}$  | Current regulator bandwidth       |
|-----------------|-----------------------------------|
| i <sub>d</sub>  | d-axis current                    |
| i <sub>q</sub>  | q-axis current                    |
| i <sub>sq</sub> | Stator q-axis current             |
| i <sub>sd</sub> | Stator d-axis current             |
| $v_{sd}$        | Stator d-axis voltage             |
| $v_{sq}$        | Stator q-axis voltage             |
| $K_p$           | Current regulator d-axis gain     |
| $K_i$           | Current regulator integrator gain |
| $L_s$           | Stator winding inductance         |
| $L_m$           | Motor magnetizing inductance      |
| $L_r$           | Rotor winding inductance          |
| $R_s$           | Stator phase winding resistance   |
| $\lambda_{rd}$  | Rotor d-axis magnetic flux        |
| σ               | Leakage factor                    |
| р               | Motor pole pairs                  |
|                 |                                   |

## Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase  $(\alpha, \beta)$  quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_e = P\omega_m$$
$$\frac{d\theta_e}{dt} = \omega_e$$

| Transform      | Description                                                                                                                                    | Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clarke         | Converts balanced three-phase quantities $(a, b)$ into balanced two-<br>phase quadrature quantities $(\alpha, \beta)$ .                        | $x_{\alpha} = \frac{2}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $\sqrt{3} = \sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Park           | Converts balanced two-phase<br>orthogonal stationary quantities<br>$(\alpha, \beta)$ into an orthogonal rotating<br>reference frame $(d, q)$ . | $x_{\beta} = \frac{1}{2} x_{b} - \frac{1}{2} x_{c}$ $x_{d} = x_{\alpha} \cos \theta_{e} + x_{\beta} \sin \theta_{e}$ $x_{q} = -x_{\alpha} \sin \theta_{e} + x_{\beta} \cos \theta_{e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Inverse Clarke | Converts balanced two-phase quadrature quantities $(\alpha, \beta)$ into balanced three-phase quantities $(a, b)$ .                            | $x_a = x_a$<br>$x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Inverse Park   | Converts an orthogonal rotating<br>reference frame $(d, q)$ into<br>balanced two-phase orthogonal<br>stationary quantities $(\alpha, \beta)$ . | $\begin{aligned} x_{\alpha}^{c} &= \frac{1}{x_{a}} x_{\alpha} \delta_{\theta} \delta$ |

The transforms use these variables.

| $\omega_m$ | Rotor mechanical | speed |
|------------|------------------|-------|
| ~~ m       | noon moonamoa    | opood |

- *P* Motor pole pairs
- $\omega_e$  Rotor electrical speed
- $\Theta_e$  Rotor electrical angle
- *x* Phase current or voltage

### Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

| Load power                                         | $Ld_{Punr} = v_a i_a + v_b i_b + v_c i_c$                          |
|----------------------------------------------------|--------------------------------------------------------------------|
| Source power                                       | $Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$                                |
| DC bus current                                     | $i_{bus} = \frac{Src_{Pwr}}{v_{bus}}$                              |
| Estimated rotor torque                             | $MtrTrq_{est} = P\lambda_{rd}i_{sq} \frac{L_m}{L_r}$               |
| Power loss for single efficiency<br>source to load | $Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$                |
| Power loss for single efficiency<br>load to source | $Pwr_{Loss} = \frac{100 - Eff}{100} \cdot \left  Ld_{Pwr} \right $ |
| Power loss for tabulated efficiency                | $Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$                           |

The equations use these variables.

| $v_a$ , $v_b$ , $v_c$ | Stator phase a, b, c voltages |
|-----------------------|-------------------------------|
| $v_{bus}$             | Estimated DC bus voltage      |
| $i_a$ , $i_b$ , $i_c$ | Stator phase a, b, c currents |
| i <sub>bus</sub>      | Estimated DC bus current      |
| Eff                   | Overall inverter efficiency   |
| $\omega_m$            | Rotor mechanical speed        |
| $L_r$                 | Rotor winding inductance      |
| $L_m$                 | Motor magnetizing inductance  |
| $\lambda_{rd}$        | Rotor d-axis magnetic flux    |
| i <sub>sq</sub>       | q-axis current                |
| Р                     | Motor pole pairs              |
|                       |                               |

## **Electrical Losses**

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

| Setting                          | Block Implementation                                                                                                                                                                          |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for inverter efficiency.                                                                                                                    |  |
| Tabulated loss data              | Electrical loss calculated as a function of motor speeds and load torques.                                                                                                                    |  |
| Tabulated efficiency<br>data     | <ul> <li>Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.</li> <li>Converts the efficiency values you provide into losses</li> </ul> |  |
|                                  | <ul> <li>and uses the tabulated losses for simulation.</li> <li>Ignores efficiency values you provide for zero speed or</li> </ul>                                                            |  |
|                                  | zero torque. Losses are assumed zero when either<br>torque or speed is zero.                                                                                                                  |  |
|                                  | • Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.         |  |
|                                  | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                        |  |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

## Ports

## Input

SpdReq — Rotor mechanical speed command
scalar

Rotor mechanical speed command,  $\omega^*_m$ , in rad/s.

#### Dependencies

To create this port, select Speed Control for the Control Type parameter.

### TrqCmd — Torque command

scalar

Torque command, *T*\*, in N.m.

#### Dependencies

To create this port, select Torque Control for the Control Type parameter.

## BusVolt – DC bus voltage

scalar

DC bus voltage  $v_{bus}$ , in V.

# PhaseCurrA — Current scalar

Stator current phase a,  $i_a$ , in A.

# PhaseCurrB — Current scalar

Stator current phase b,  $i_b$ , in A.

SpdFdbk — Rotor mechanical speed
scalar

Rotor mechanical speed,  $\omega_m$ , in rad/s.

## Output

Info — Bus signal bus

Bus signal containing these block calculations.

| Signal    | Description            | Units |
|-----------|------------------------|-------|
| SrcPwr    | Source power           | W     |
| LdPwr     | Load power             | W     |
| PwrLoss   | Power loss             | W     |
| MtrTrqEst | Estimated motor torque | N.m   |

#### BusCurr – Bus current

scalar

Estimated DC bus current,  $i_{bus}$ , in A.

#### PhaseVolt — Stator terminal voltages

array

Stator terminal voltages,  $V_a$ ,  $V_b$ , and  $V_c$ , in V.

## **Parameters**

#### **Block Options**

#### **Control Type — Select control** Speed Control (default) | Torque Control

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

| Port Configuration | Creates Ports |
|--------------------|---------------|
| Speed Control      | SpdReq        |
| Torque Control     | TrqCmd        |

#### Motor

# Stator resistance, Rs - Resistance scalar

Stator phase winding resistance,  $R_s$ , in ohm.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                | Used to Derive                                                                                |                       |
|--------------------------|-----------------------------------------------------------------------------------------------|-----------------------|
|                          | Parameter                                                                                     | Tab                   |
| Stator resistance,<br>Rs | D-axis rated current, Isd_0<br>Q-axis rated current, Isq_0<br>Torque at rated current,<br>Tem | Id and Iq Calculation |
|                          | D and Q axis integral gain,<br>Ki                                                             | Current Controller    |

## Stator leakage inductance, Lls — Inductance

scalar

Stator leakage inductance,  $L_{ls}$ , in H.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                         | Used to Derive                                                                                |                       |
|-----------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|
|                                   | Parameter                                                                                     | Tab                   |
| Stator leakage<br>inductance, Lls | D-axis rated current, Isd_0<br>Q-axis rated current, Isq_0<br>Torque at rated current,<br>Tem | Id and Iq Calculation |
|                                   | D and Q axis proportional<br>gain, Kp<br>D and Q axis integral gain,<br>Ki                    | Current Controller    |

Rotor resistance, Rr — Resistance scalar

Rotor resistance,  $R_r$ , in ohm.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter               | Used to Derive                                                                                |                       |
|-------------------------|-----------------------------------------------------------------------------------------------|-----------------------|
|                         | Parameter                                                                                     | Tab                   |
| Rotor resistance,<br>Rr | D-axis rated current, Isd_0<br>Q-axis rated current, Isq_0<br>Torque at rated current,<br>Tem | Id and Iq Calculation |

#### Rotor leakage inductance, Llr — Inductance scalar

Rotor leakage inductance,  $L_{lr}$ , in H.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                        | Used to Derive                        |                       |
|----------------------------------|---------------------------------------|-----------------------|
|                                  | Parameter                             | Tab                   |
| Rotor leakage<br>inductance. Llr | D-axis rated current, Isd_0           | Id and Iq Calculation |
|                                  | Q-axis rated current, Isq_0           |                       |
|                                  | Torque at rated current,<br>Tem       |                       |
|                                  | D and Q axis proportional<br>gain, Kp | Current Controller    |

Rotor magnetizing inductance, Lm — Inductance scalar

Rotor magnetizing inductance,  $L_m$ , in H.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                        | Used to Derive                     |                       |
|----------------------------------|------------------------------------|-----------------------|
|                                  | Parameter                          | Tab                   |
| Rotor leakage<br>inductance, Llr | D-axis rated current, Isd_0        | Id and Iq Calculation |
|                                  | Q-axis rated current, lsq_0        |                       |
|                                  | Torque at rated current,<br>Tem    |                       |
|                                  | D and Q axis proportional gain, Kp | Current Controller    |

#### Number of pole pairs, PolePairs - Poles

scalar

Motor pole pairs, P.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                        | Used to Derive                  |                       |
|----------------------------------|---------------------------------|-----------------------|
|                                  | Parameter                       | Tab                   |
| Rotor leakage<br>inductance, Llr | Torque at rated current,<br>Tem | Id and Iq Calculation |

# Physical inertia, viscous damping, static friction, Mechanical — Mechanical properties of motor

vector

Mechanical properties of the motor:

- Motor inertia,  $F_{v}$ , in kgm<sup>2</sup>
- Viscous friction torque constant,  $F_{\nu}$ , in N.m/(rad/s)
- Static friction torque constant,  $F_s$ , in N.m

#### Dependencies

To enable this parameter, set the **Control Type** parameter to Speed Control.

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value that is on the **Motor Parameters** tab.

| Parameter                                                               | Used to Derive                                                                                                                               |                  |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                         | Parameter                                                                                                                                    | Tab              |
| Physical inertia,<br>viscous damping,<br>static friction,<br>Mechanical | Proportional gain, ba<br>Angular gain, Ksa<br>Rotational gain, Kisa<br>Inertia compensation,<br>Jcomp<br>Viscous damping<br>compensation, Fy | Speed Controller |
|                                                                         | Static friction, Fs                                                                                                                          |                  |

#### Id and Iq Calculation

**Rated synchronous speed, Frate – Motor frequency** scalar

Motor-rated electrical frequency,  $F_{rate}$ , in Hz.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                         | Used to Derive                                                                                |                       |
|-----------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|
|                                   | Parameter                                                                                     | Tab                   |
| Rated synchronous<br>speed, Frate | D-axis rated current, Isd_0<br>Q-axis rated current, Isq_0<br>Torque at rated current,<br>Tem | Id and Iq Calculation |

# Rated line to line voltage RMS, Vrate — Motor voltage scalar

Motor-rated line-to-line voltage,  $V_{rate}$ , in V.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                         | Used to Derive                                                                                |                       |
|-----------------------------------|-----------------------------------------------------------------------------------------------|-----------------------|
|                                   | Parameter                                                                                     | Tab                   |
| Rated synchronous<br>speed, Frate | D-axis rated current, Isd_0<br>Q-axis rated current, Isq_0<br>Torque at rated current,<br>Tem | Id and Iq Calculation |

### Rated slip, Srate — Motor slip speed

scalar

Motor-rated slip speed,  $S_{rate}$ , dimensionless.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter         | Used to Derive                                                                                |                       |
|-------------------|-----------------------------------------------------------------------------------------------|-----------------------|
|                   | Parameter                                                                                     | Tab                   |
| Rated slip, Srate | D-axis rated current, Isd_0<br>Q-axis rated current, Isq_0<br>Torque at rated current,<br>Tom | Id and Iq Calculation |

# Calculate Rated Stator Flux Current — Derive parameters button

Click to derive parameters.

#### Dependencies

| Derived                                      | Dependency                               |                       |
|----------------------------------------------|------------------------------------------|-----------------------|
| Parameter on Id<br>and Iq Calculation<br>tab | Parameter                                | Tab                   |
| D-axis rated<br>current, Isd_0               | Rated synchronous speed,<br>Frate        | Id and Iq Calculation |
| Q-axis rated<br>current, Isq_0               | Rated line to line voltage<br>RMS, Vrate |                       |
| Torque at rated<br>current, Tem              | Rated slip, Srate                        |                       |

| Derived                                      | Dependency                          |                  |
|----------------------------------------------|-------------------------------------|------------------|
| Parameter on Id<br>and Iq Calculation<br>tab | Parameter                           | Tab              |
|                                              | Stator resistance, Rs               | Motor Parameters |
|                                              | Stator leakage inductance,<br>Lls   |                  |
|                                              | Rotor resistance, Rr                |                  |
|                                              | Rotor leakage inductance,<br>Llr    |                  |
|                                              | Rotor magnetizing<br>inductance, Lm |                  |

## D-axis rated current, Isd\_0 - Derived

scalar

Derived d-axis rated current, in A.

#### Dependencies

| Derived                                      | Dependency                               |                       |
|----------------------------------------------|------------------------------------------|-----------------------|
| Parameter on Id<br>and Iq Calculation<br>tab | Parameter                                | Tab                   |
| D-axis rated<br>current, Isd_0               | Rated synchronous speed,<br>Frate        | Id and Iq Calculation |
| Q-axis rated<br>current, Isq_0               | Rated line to line voltage<br>RMS, Vrate |                       |
| Torque at rated<br>current, Tem              | Rated slip, Srate                        |                       |

| Derived                                      | Dependency                          |                  |
|----------------------------------------------|-------------------------------------|------------------|
| Parameter on Id<br>and Iq Calculation<br>tab | Parameter                           | Tab              |
|                                              | Stator resistance, Rs               | Motor Parameters |
|                                              | Stator leakage inductance,<br>Lls   |                  |
|                                              | Rotor resistance, Rr                |                  |
|                                              | Rotor leakage inductance,<br>Llr    |                  |
|                                              | Rotor magnetizing<br>inductance, Lm |                  |

## Q-axis rated current, Isq\_0 - Derived

scalar

Derived q-axis rated current, in A.

#### Dependencies

| Derived                                      | Dependency                               |                       |
|----------------------------------------------|------------------------------------------|-----------------------|
| Parameter on Id<br>and Iq Calculation<br>tab | Parameter                                | Tab                   |
| D-axis rated<br>current, Isd_0               | Rated synchronous speed,<br>Frate        | Id and Iq Calculation |
| Q-axis rated<br>current, Isq_0               | Rated line to line voltage<br>RMS, Vrate |                       |
| Torque at rated<br>current, Tem              | Rated slip, Srate                        |                       |

| Derived                                      | Dependency                          |                  |
|----------------------------------------------|-------------------------------------|------------------|
| Parameter on Id<br>and Iq Calculation<br>tab | Parameter                           | Tab              |
|                                              | Stator resistance, Rs               | Motor Parameters |
|                                              | Stator leakage inductance,<br>Lls   |                  |
|                                              | Rotor resistance, Rr                |                  |
|                                              | Rotor leakage inductance,<br>Llr    |                  |
|                                              | Rotor magnetizing<br>inductance, Lm |                  |

# Torque at rated current, Tem - Derived scalar

Torque at rated current, in N.m.

#### Dependencies

| Derived<br>Parameter on Id<br>and Iq Calculation<br>tab | Dependency                               |                       |  |
|---------------------------------------------------------|------------------------------------------|-----------------------|--|
|                                                         | Parameter                                | Tab                   |  |
| D-axis rated<br>current, Isd_0                          | Rated synchronous speed,<br>Frate        | Id and Iq Calculation |  |
| Q-axis rated<br>current, Isq_0                          | Rated line to line voltage<br>RMS, Vrate |                       |  |
| Torque at rated<br>current, Tem                         | Rated slip, Srate                        |                       |  |

| Derived<br>Parameter on Id<br>and Iq Calculation<br>tab | Dependency                          |                  |  |
|---------------------------------------------------------|-------------------------------------|------------------|--|
|                                                         | Parameter                           | Tab              |  |
|                                                         | Stator resistance, Rs               | Motor Parameters |  |
|                                                         | Stator leakage inductance,<br>Lls   |                  |  |
|                                                         | Rotor resistance, Rr                |                  |  |
|                                                         | Rotor leakage inductance,<br>Llr    |                  |  |
|                                                         | Rotor magnetizing<br>inductance, Lm |                  |  |

#### **Current Controller**

# Bandwidth of the current regulator, EV\_current — Bandwidth scalar

Current regulator bandwidth, in Hz.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                                            | Used to Derive                                                             |                    |
|------------------------------------------------------|----------------------------------------------------------------------------|--------------------|
|                                                      | Parameter                                                                  | Tab                |
| Bandwidth of the<br>current regulator,<br>EV_current | D and Q axis integral gain,<br>Ki<br>D and Q axis proportional<br>gain, Kp | Current Controller |

# Sample time for the torque control, Tst - Time scalar

Torque control sample time, in s.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                                     | Used to Derive           |                  |
|-----------------------------------------------|--------------------------|------------------|
|                                               | Parameter                | Tab              |
| Sample time for<br>the torque control,<br>Tst | Speed time constant, Ksf | Speed Controller |

# **Calculate Current Regulator Gains — Derive parameters** button

DULLOII

Click to derive parameters.

#### Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

| Derived                                   | Dependency                                     |                    |
|-------------------------------------------|------------------------------------------------|--------------------|
| Parameter on<br>Current Controller<br>tab | Parameter                                      | Tab                |
| D and Q axis<br>proportional gain,<br>Kp  | Bandwidth of the current regulator, EV_current | Current Controller |
|                                           | Stator resistance, Rs                          | Motor Parameters   |
| D and Q axis<br>integral gain, Ki         | Stator leakage inductance,<br>Lls              |                    |
|                                           | Rotor resistance, Rr                           |                    |
|                                           | Rotor leakage inductance,<br>Llr               |                    |
|                                           | Rotor magnetizing<br>inductance, Lm            |                    |

## D and Q axis proportional gain, $\ensuremath{\mathsf{Kp}}\xspace - \ensuremath{\mathsf{Derived}}\xspace$

scalar

Derived proportional gain, in V/A.

#### Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

| Derived<br>Parameter on<br>Current Controller<br>tab | Dependency                                     |                    |  |
|------------------------------------------------------|------------------------------------------------|--------------------|--|
|                                                      | Parameter                                      | Tab                |  |
| D and Q axis<br>proportional gain,<br>Kp             | Bandwidth of the current regulator, EV_current | Current Controller |  |
|                                                      | Stator resistance, Rs                          | Motor Parameters   |  |
| D and Q axis<br>integral gain, Ki                    | Stator leakage inductance,<br>Lls              |                    |  |
|                                                      | Rotor resistance, Rr                           |                    |  |
|                                                      | Rotor leakage inductance,<br>Llr               |                    |  |
|                                                      | Rotor magnetizing<br>inductance, Lm            |                    |  |

**D** and **Q** axis integral gain, Ki — Derived scalar

Derived integral gain, in V/A\*s.

#### Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

| Derived<br>Parameter on<br>Current Controller<br>tab | Dependency                                     |                    |
|------------------------------------------------------|------------------------------------------------|--------------------|
|                                                      | Parameter                                      | Tab                |
| D and Q axis<br>proportional gain,<br>Kp             | Bandwidth of the current regulator, EV_current | Current Controller |
|                                                      | Stator resistance, Rs                          | Motor Parameters   |
| D and Q axis<br>integral gain, Ki                    | Stator leakage inductance,<br>Lls              |                    |
|                                                      | Rotor resistance, Rr                           |                    |
|                                                      | Rotor leakage inductance,<br>Llr               |                    |
|                                                      | Rotor magnetizing<br>inductance, Lm            |                    |

#### Speed Controller

# Bandwidth of the motion controller, EV\_motion — Bandwidth vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to 1/5 the value of the previous element. For example, if the desired cutoff frequency is 20 Hz, specify [20 4 0.8].

#### Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

| Parameter                                           | Used to Derive        |                  |
|-----------------------------------------------------|-----------------------|------------------|
|                                                     | Parameter             | Tab              |
| Bandwidth of the<br>motion controller,<br>EV_motion | Proportional gain, ba | Speed Controller |
|                                                     | Angular gain, Ksa     |                  |
|                                                     | Rotational gain, Kisa |                  |

# Bandwidth of the state filter, EV\_sf - Bandwidth scalar

State filter bandwidth, in Hz.

#### Dependencies

The parameter is enabled when the **Control Type** parameter is set to Speed Control.

| Parameter                            | Used to Derive           |                  |
|--------------------------------------|--------------------------|------------------|
|                                      | Parameter                | Tab              |
| Bandwidth of the state filter, EV_sf | Speed time constant, Ksf | Speed Controller |

### Sample time for the motion control, $\mathsf{Tsm}-\mathsf{Time}$

scalar

Sample time for the motion controller, in s.

#### Dependencies

The parameter is enabled when the **Control Type** parameter is set to Speed Control.

| Parameter                  | Used to Derive        |                  |
|----------------------------|-----------------------|------------------|
|                            | Parameter             | Tab              |
| Sample time for the motion | Proportional gain, ba | Speed Controller |
| control, Tsm               | Angular gain, Ksa     |                  |
|                            | Rotational gain, Kisa |                  |

**Calculate Speed Regulator Gains — Derive parameters** button

Click to derive parameters.

#### Dependencies

On the **Speed Controller** tab, when you select **Calculate Speed Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

| Derived Parameter on Speed Controller      |                                                                          | Depends On                                                       |                    |
|--------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|
| tab                                        |                                                                          | Parameter                                                        | Tab                |
| Proportional<br>gain, ba                   | $b_{a} = \frac{J_{p} - J_{p} p_{1} p_{2} p_{3}}{T_{sm}}$                 | Sample time for<br>the motion<br>control, Tsm                    | Speed Controller   |
|                                            |                                                                          | Bandwidth of<br>the motion<br>controller,<br>EV_motion           |                    |
|                                            |                                                                          | Bandwidth of<br>the state filter,<br>EV_sf                       |                    |
| Angular<br>gain, Ksa                       | $K_{sa} = \frac{J_p (p_1 p_2 + p_2 p_3 + p_3 p_1) - T_{sm}^2}{T_{sm}^2}$ | Sample <sub>b</sub> time for<br>the torque<br>control, Tst       | Current Controller |
| Rotational<br>gain, Kisa                   | $K_{isa} = \frac{-J_{p}(p_{1} + p_{2} + p_{3}) + 3J_{p}}{T_{sm}^{3}}$    | Physical inertia,<br>$VISCOUS$ $K_{sa}T_{sm}$<br>damping, static | Motor Parameters   |
| Speed time<br>constant,<br>Ksf             | $K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$     | Mechanical                                                       |                    |
| Inertia<br>compensatio<br>n, Jcomp         | $J_{comp} = J_p$                                                         | Physical inertia,<br>viscous<br>damping, static                  | Motor Parameters   |
| Viscous<br>damping<br>compensatio<br>n, Fv | F <sub>v</sub>                                                           | Mechanical                                                       |                    |
| Static<br>friction, Fs                     | F <sub>s</sub>                                                           |                                                                  |                    |

The equations use these variables.

*P* Motor pole pairs

| $\boldsymbol{b}_a$ | Speed regulator proportional gain          |
|--------------------|--------------------------------------------|
| $K_{sa}$           | Speed regulator integral gain              |
| K <sub>isa</sub>   | $Speed\ regulator\ double\ integral\ gain$ |
| $K_{sf}$           | Speed regulator time constant              |
| $J_p$              | Motor inertia                              |
| $T_{sm}$           | Motion controller sample time              |
| $EV_{sf}$          | State filter bandwidth                     |
| $EV_{motion}$      | Motion controller bandwidth                |
|                    |                                            |

### Proportional gain, ba — Derived

scalar

Derived proportional gain, in N.m/(rad/s).

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                | Dependency                                                           |                  |
|--------------------------|----------------------------------------------------------------------|------------------|
|                          | Parameter                                                            | Tab              |
| Proportional gain,<br>ba | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |
|                          | Bandwidth of the motion controller, EV_motion                        | Speed Controller |
|                          | Sample time for the motion control, Tsm                              |                  |

#### Angular gain, Ksa — Derived

scalar

Derived angular gain, in N.m/rad.

#### Dependencies

This table summarizes the parameter dependencies.
| Parameter         | Dependency                                                           |                  |
|-------------------|----------------------------------------------------------------------|------------------|
|                   | Parameter                                                            | Tab              |
| Angular gain, Ksa | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |
|                   | Bandwidth of the motion controller, EV_motion                        | Speed Controller |
|                   | Sample time for the motion control, Tsm                              |                  |

### Rotational gain, Kisa — Derived

scalar

Derived rotational gain, in N.m/(rad\*s).

### Dependencies

This table summarizes the parameter dependencies.

| Parameter                | Dependency                                                           |                  |
|--------------------------|----------------------------------------------------------------------|------------------|
|                          | Parameter                                                            | Tab              |
| Rotational gain,<br>Kisa | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |
|                          | Bandwidth of the motion controller, EV_motion                        | Speed Controller |
|                          | Sample time for the motion control, Tsm                              |                  |

### Speed time constant, Ksf — Derived

scalar

Derived speed time constant, in 1/s.

### Dependencies

| Parameter                   | Dependency                              |                    |
|-----------------------------|-----------------------------------------|--------------------|
|                             | Parameter                               | Tab                |
| Speed time<br>constant, Ksf | Sample time for the torque control, Tst | Current Controller |
|                             | Bandwidth of the state filter, EV_sf    | Speed Controller   |

### $\label{eq:compensation, Jcomp - Derived} Inertia \ compensation, \ Jcomp - Derived$

scalar

Derived inertia compensation, in kg\*m^2.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                         | Dependency                                                           |                  |
|-----------------------------------|----------------------------------------------------------------------|------------------|
|                                   | Parameter                                                            | Tab              |
| Inertia<br>compensation,<br>Jcomp | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

### Viscous damping compensation, Fv — Derived

scalar

### Dependencies

This table summarizes the parameter dependencies.

| Parameter                           | Dependency                                                           |                  |
|-------------------------------------|----------------------------------------------------------------------|------------------|
|                                     | Parameter                                                            | Tab              |
| Viscous damping<br>compensation, Fv | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

### Static friction, Fs — Derived

scalar

Derived static friction, in N.m/(rad/s).

### Dependencies

This table summarizes the parameter dependencies.

| Parameter           | Dependency                                                           |                  |
|---------------------|----------------------------------------------------------------------|------------------|
|                     | Parameter                                                            | Tab              |
| Static friction, Fs | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

### **Electrical Losses**

### Parameterize losses by — Select type

Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data

| Setting                          | Block Implementation                                                                                                                                                                  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for inverter efficiency.                                                                                                            |
| Tabulated loss data              | Electrical loss calculated as a function of motor speeds and load torques.                                                                                                            |
| Tabulated efficiency<br>data     | Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.                                                                             |
|                                  | • Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.                                                                                |
|                                  | • Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either torque or speed is zero.                                                   |
|                                  | • Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions. |
|                                  | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

## Overall inverter efficiency, eff — Constant

scalar

Overall inverter efficiency, *Eff*, in %.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

# **Vector of speeds (w) for tabulated loss, w\_loss\_bp — Breakpoints** 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

# Vector of torques (T) for tabulated loss, T\_loss\_bp — Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in N.m.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

### Corresponding losses, losses\_table — Table

M-by-N matrix

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

**Vector of speeds (w) for tabulated efficiency, w\_eff\_bp — Breakpoints** 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

# Vector of torques (T) for tabulated efficiency, T\_eff\_bp — Breakpoints

1-by-N matrix

Torque breakpoints for lookup table when calculating efficiency, in N.m.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

### Corresponding efficiency, efficiency\_table — Table

M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

## References

- [1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." *Proceedings of the IEEE*, Vol. 82, Issue 8, August 1994, pp. 1215–1240.
- [2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current

regulator." *IEEE Transactions on Industry Applications*, Vol. 30, Issue 4, July/ August 1994, pp. 920–926.

- [3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
- [4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." *IEEE Transactions on Industry Applications*, Vol. 36, Issue 3, May/June 2000, pp. 817–825.
- [5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."*IEEE Transactions on Industry Applications*, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42–50.

# See Also

Flux-Based PM Controller | Induction Motor | Interior PM Controller | Surface Mount PM Controller

### Introduced in R2017a

# **Surface Mount PMSM**

Three-phase exterior permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Propulsion / Electric Motors



# Description

The Surface Mount PMSM block implements a three-phase exterior permanent magnet synchronous motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

## **Motor Construction**

This figure shows the motor construction with a single pole pair on the rotor.



The rotor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux with rotor angle.

For the axes convention, the *a*-phase and permanent magnet fluxes are aligned when rotor angle  $\theta_r$  is zero.

## **Three-Phase Sinusoidal Model Electrical System**

The block implements these equations, expressed in the rotor flux reference frame (dq frame). All quantities in the rotor reference frame are referred to the stator.

$$\begin{split} & \omega_e = P\omega_m \\ & \frac{d}{dt}i_d = \frac{1}{L_d}v_d - \frac{R}{L_d}i_d + \frac{L_q}{L_d}P\omega_m i_q \\ & \frac{d}{dt}i_q = \frac{1}{L_q}v_q - \frac{R}{L_q}i_q - \frac{L_d}{L_q}P\omega_m i_d - \frac{\lambda_{pm}P\omega_m}{L_q} \\ & T_e = 1.5P[\lambda_{pm}i_q + (L_d - L_q)i_di_q] \end{split}$$

The  $L_q$  and  $L_d$  inductances represent the relation between the phase inductance and the rotor position due to the saliency of the rotor magnets. For the surface mount PMSM,

$$L_d = L_q$$
.

The equations use these variables.

| $L_q$ , $L_d$                   | q- and d-axis inductances                |
|---------------------------------|------------------------------------------|
| R                               | Resistance of the stator windings        |
| i <sub>q</sub> , i <sub>d</sub> | q- and d-axis currents                   |
| $v_q$ , $v_d$                   | q- and d-axis voltages                   |
| $\omega_m$                      | Angular mechanical velocity of the rotor |
| $\omega_e$                      | Angular electrical velocity of the rotor |
| $\lambda_{pm}$                  | Permanent magnet flux linkage            |
| Р                               | Number of pole pairs                     |
| $T_e$                           | Electromagnetic torque                   |
| $\Theta_e$                      | Electrical angle                         |
|                                 |                                          |

### **Mechanical System**

The rotor angular velocity is given by:

$$\begin{split} \frac{d}{dt}\omega_m &= \frac{1}{J} \big( T_e - T_f - F \omega_m - T_m \big) \\ \frac{d\theta_m}{dt} &= \omega_m \end{split}$$

The equations use these variables.

| J          | Combined inertia of rotor and load                        |
|------------|-----------------------------------------------------------|
| F          | $Combined \ viscous \ friction \ of \ rotor \ and \ load$ |
| $	heta_m$  | Rotor mechanical angular position                         |
| $T_m$      | Rotor shaft torque                                        |
| $T_e$      | Electromagnetic torque                                    |
| $T_f$      | Rotor shaft static friction torque                        |
| $\omega_m$ | Angular mechanical velocity of the rotor                  |

# Ports

## Input

### LdTrq — Rotor shaft torque

scalar

Rotor shaft input torque,  $T_m$ , in N.m.

### Dependencies

To create this port, select Torque for the **Port Configuration** parameter.

## Spd — Rotor shaft speed

scalar

Angular velocity of the rotor,  $\omega_m$ , in rad/s.

#### Dependencies

To create this port, select Speed for the **Port Configuration** parameter.

### PhaseVolt — Stator terminal voltages

vector

Stator terminal voltages,  $V_a$ ,  $V_b$ , and  $V_c$ , in V.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal   | Description                              | Variable       | Units |
|----------|------------------------------------------|----------------|-------|
| IaStator | Stator phase current A                   | i <sub>a</sub> | А     |
| IbStator | Stator phase current B                   | i <sub>b</sub> | А     |
| IcStator | Stator phase current C                   | i <sub>c</sub> | А     |
| IdSync   | Direct axis current                      | i <sub>d</sub> | А     |
| IqSync   | Quadrature axis current                  | i <sub>q</sub> | А     |
| VdSync   | Direct axis voltage                      | V <sub>d</sub> | V     |
| VqSync   | Quadrature axis voltage                  | Vq             | V     |
| MtrSpd   | Angular mechanical velocity of the rotor | $\omega_m$     | rad/s |
| MtrPos   | Rotor mechanical<br>angular position     | $\theta_m$     | rad   |
| MtrTrq   | Electromagnetic torque                   | T <sub>e</sub> | N.m   |

# **Parameters**

### Port Configuration — Select port configuration

Torque (default) | Speed

This table summarizes the port configurations.

| Port Configuration | Creates Ports |
|--------------------|---------------|
| Torque             | PhaseVolt     |
|                    | Info          |
|                    | LdTrq         |
| Speed              | PhaseVolt     |
|                    | Info          |
|                    | Spd           |

Stator phase resistance, Rs - Resistance
scalar

Stator phase resistance,  $R_s$ , in ohm.

# Armature inductance, Ldq\_ - Inductance vector

Armature inductance,  $L_d$ ,  $L_q$ , in H.

# Permanent magnet flux, lambda\_pm — Flux scalar

Permanent magnet flux linkage,  $\lambda_{pm}$ , in Wb.

# Number of pole pairs, P — Pole pairs scalar

Motor pole pairs, *P*.

### Initial dq current, idq0 - Current

```
vector
```

Initial q- and d-axis currents,  $i_q$ ,  $i_d$ , in A.

# Initial mechanical position, theta\_init - Angle scalar

Initial rotor angular position,  $\theta_{m0}$ , in rad.

# Initial mechanical speed, omega\_init — Speed scalar

Initial angular velocity of the rotor,  $\omega_{m0}$ , in rad/s.

#### Dependencies

To enable this parameter, select the Torque configuration parameter.

# Physical inertia, viscous damping, and static friction, mechanical — Inertia, damping, friction

vector

Mechanical properties of the rotor:

- Inertia, *J*, in kgm<sup>2</sup>
- Viscous damping, *F*, in N.m/(rad/s)
- Static friction, *T<sub>f</sub>*, in N.m

#### Dependencies

To enable this parameter, select the Torque configuration parameter.

### References

- [1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.
- [2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

## See Also

Flux-Based PMSM | Induction Motor | Interior PMSM | Mapped Motor | Surface Mount PM Controller

### Introduced in R2017a

# Surface Mount PM Controller

Torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor

Library: Propulsion / Electric Motor Controllers



# Description

The Surface Mount PM Controller block implements a torque-based, field-oriented controller for a surface mount permanent magnet synchronous motor (PMSM) with an optional outer-loop speed controller. The torque control utilizes quadrature current and does not weaken the magnetic flux. You can specify either speed or torque control.

The Surface Mount PM Controller implements equations for speed control, torque determination, regulators, transforms, and motors.

The figure illustrates the information flow in the block.



The block implements equations that use these variables.

| ω                                                | Rotor speed                   |
|--------------------------------------------------|-------------------------------|
| $\omega^*$                                       | Rotor speed command           |
| $T^*$                                            | Torque command                |
| i <sub>d</sub>                                   | d-axis current                |
| <i>i</i> * <sub>d</sub>                          | d-axis current command        |
| i <sub>q</sub>                                   | q-axis current                |
| <i>i</i> * <sub>q</sub>                          | q-axis current command        |
| $v_d$ ,                                          | d-axis voltage                |
| $v_d^*$                                          | d-axis voltage command        |
| $v_q$                                            | q-axis voltage                |
| $v_q^*$                                          | q-axis voltage command        |
| $v_a$ , $v_b$ , $v_c$                            | Stator phase a, b, c voltages |
| i <sub>a</sub> , i <sub>b</sub> , i <sub>c</sub> | Stator phase a, b, c currents |

## **Speed Controller**

To implement the speed controller, select the **Control Type** parameter **Speed Control**. If you select the **Control Type** parameter **Torque Control**, the block does not implement the speed controller.

The speed controller determines the torque command by implementing a state filter, and calculating the feedforward and feedback commands. If you do not implement the speed controller, input a torque command to the Surface Mount PM Controller block.



The state filter is a low-pass filter that generates the acceleration command based on the speed command. On the **Speed Controller** tab:

- To make the speed-command lag time negligible, specify a **Bandwidth of the state filter** parameter.
- To calculate a **Speed time constant, Ksf** gain based on the state filter bandwidth, select **Calculate Speed Regulator Gains**.

The discrete form of characteristic equation is given by:

$$z + K_{sf}T_{sm} - 1$$

The filter calculates the gain using this equation.

$$K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$$

The equations use these variables.

 $EV_{sf}$  Bandwidth of the speed command filter

- $T_{sm}$  Motion controller sample time
- $K_{sf}$  Speed regulator time constant

To generate the state feedback torque, the block uses the filtered speed error signal from the state filter. The feedback torque calculation also requires gains for speed regulator.

On the **Speed Controller** tab, select **Calculate Speed Regulator Gains** to calculate:

- Proportional gain, ba
- Angular gain, Ksa
- Rotational gain, Kisa

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value on the **Motor Parameters** tab.

| The gains for the state feedback are calculated | l using these equations. |
|-------------------------------------------------|--------------------------|
|-------------------------------------------------|--------------------------|

| Calculation                                     | Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Discrete forms of<br>characteristic<br>equation | $z^{3} + \frac{\left(-3J_{p} + T_{s}b_{a} + T_{s}^{2}K_{sa} + T_{s}^{3}K_{isa}\right)}{J_{p}}z^{2} + \frac{\left(3J_{p} - 2T_{s}b_{a} - T_{s}^{2}K_{sa}\right)}{J_{p}}z + \frac{\left(-3J_{p} - 2T_{s}$ | $\frac{-J_p + T_s b_a}{J_p}$                |
|                                                 | $(z - p_1)(z - p_2)(z - p_3) = z^3 + (p_1 + p_2 + p_3)z^2 + (p_1p_2 + p_2p_3 + p_13)z^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $p_{1}^{2} - p_{1}^{2} p_{2}^{2} p_{3}^{2}$ |
| Speed regulator<br>proportional gain            | $b_{a} = \frac{J_{p} - J_{p} p_{1} p_{2} p_{3}}{T_{sm}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |
| Speed regulator<br>integral gain                | $K_{sa} = \frac{J_p (p_1 p_2 + p_2 p_3 + p_3 p_1) - 3J_p + 2b_a T_{sm}}{T_{sm}^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |
| Speed regulator<br>double integral gain         | $K_{isa} = \frac{-J_p (p_1 + p_2 + p_3) + 3J_p - b_a T_{sm} - K_{sa} T_{sm}^2}{T_{sm}^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |

The equations use these variables.

- *P* Motor pole pairs
- *b<sub>a</sub>* Speed regulator proportional gain
- $K_{sa}$  Speed regulator integral gain

| K <sub>isa</sub> | Speed regulator double integral gain |
|------------------|--------------------------------------|
| $J_p$            | Motor inertia                        |
| $T_{sm}$         | Motion controller sample time        |

To generate the state feedforward torque, the block uses the filtered speed and acceleration from the state filter. Also, the feedforward torque calculation uses the inertia, viscous damping, and static friction. To achieve zero tracking error, the torque command is the sum of the feedforward and feedback torque commands.

Selecting **Calculate Speed Regulator Gains** on the **Speed Controller** tab updates the inertia, viscous damping, and static friction with the **Physical inertia, viscous damping, static friction** parameter values on the **Motor Parameters** tab.

The feedforward torque command uses this equation.

$$T_{cmd_{-}ff} = J_p \dot{\omega}_m + F_v \omega_m + F_s \frac{\omega_m}{|\omega_m|}$$

The equation uses these variables.

| $J_p$               | Motor inertia                    |
|---------------------|----------------------------------|
| T <sub>cmd_ff</sub> | Torque command feedforward       |
| $F_s$               | Static friction torque constant  |
| $F_{v}$             | Viscous friction torque constant |
| $F_s$               | Static friction torque constant  |
| $\omega_m$          | Rotor speed                      |

## **Torque Determination**

The block uses a quadrature current to determine the base speed and the current commands. The available bus voltage determines the base speed. The direct (d) and quadrature (q) permanent magnet (PM) determines the induced voltage.

| Calculation                     | Equations                                                                                                                                |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Motor maximum torque            |                                                                                                                                          |
|                                 | $T_{max} = \frac{3}{2} P \Big( \lambda_{pm} i_q + (L_d - L_q) i_d i_q \Big)$                                                             |
| Maximum q-axis phase<br>current |                                                                                                                                          |
|                                 | $i_{q_max} = \frac{T_{cmd}}{3}$                                                                                                          |
| Electrical base speed           | $-rac{3}{2}P\lambda_{pm}$                                                                                                               |
|                                 | 71                                                                                                                                       |
|                                 | $\omega_{base} = \frac{\omega_{max}}{\sqrt{\omega_{max}}}$                                                                               |
| d-axis voltage                  | $ \begin{array}{c} \sqrt{\left(L_{q}i_{q}\right)^{2} + \left(\lambda_{pm}\right)^{2}} \\ v_{d} = -\omega_{e}L_{q}i_{q}\max \end{array} $ |
| q-axis voltage                  |                                                                                                                                          |
|                                 | $v_q = \omega_e \lambda_{pm}$                                                                                                            |
| Maximum phase current           |                                                                                                                                          |
|                                 | $i_{max} =  i_{q\_max} $                                                                                                                 |
| Maximum voltage                 |                                                                                                                                          |
|                                 | $v_{max} = \frac{v_{bus}}{\sqrt{3}}$                                                                                                     |

| Calculation     | Equations                                                                                                                                                           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Current command |                                                                                                                                                                     |
|                 | $i_{dref} = 0$                                                                                                                                                      |
|                 | $ \begin{split} & i_{q\_tmp} = \min(i_{q\_max}, \frac{T_{cmd}}{\frac{3}{2}P\lambda_{pm}}) \\ & \texttt{If} \left  \omega_e \right  \leq \omega_{base} \end{split} $ |
|                 | $i_{qref}$ = $i_{q\_tmp}$ Else                                                                                                                                      |
|                 | $i_{qfw} = sqrt(\min(0, \frac{1}{L_q} \left(\frac{v_{max}}{\omega_e}\right)^2 - \left(\lambda_{pm}\right)^2))$                                                      |
|                 | If $i_{q\_tmp} < i_{qfw}$                                                                                                                                           |
|                 | $i_{qref}$ = $i_{q\_tmp}$ Else                                                                                                                                      |
|                 | $i_{qref}$ = $i_{qfw}$<br>End                                                                                                                                       |
|                 | End                                                                                                                                                                 |

The equations use these variables.

| i <sub>max</sub>       | Maximum phase current           |  |
|------------------------|---------------------------------|--|
| i <sub>d</sub>         | d-axis current                  |  |
| i <sub>q</sub>         | q-axis current                  |  |
| i <sub>dref</sub>      | d-axis reference current        |  |
| i <sub>qref</sub>      | q-axis reference current        |  |
| i <sub>q_max</sub>     | Maximum q-axis phase current    |  |
| $\omega_e$             | Rotor electrical speed          |  |
| $\lambda_{pm}$         | Permanent magnet flux linkage   |  |
| $v_d$                  | d-axis voltage                  |  |
| $v_q$                  | q-axis voltage                  |  |
| <i>v<sub>max</sub></i> | Maximum line to neutral voltage |  |
|                        |                                 |  |

| $v_{bus}$        | DC bus voltage                 |
|------------------|--------------------------------|
| $L_d$            | d-axis winding inductance      |
| $L_q$            | q-axis winding inductance      |
| Р                | Motor pole pairs               |
| T <sub>max</sub> | Motor maximum torque           |
| $T_{cmd}$        | Commanded motor maximum torque |

## **Current Regulators**

The block regulates the current with an anti-windup feature. Classic proportionalintegrator (PI) current regulators do not consider the d-axis and q-axis coupling or the back-electromagnetic force (EMF) coupling. As a result, transient performance deteriorates. To account for the coupling, the block implements the complex vector current regulator (CVCR) in the scalar format of the rotor reference frame. The CVCR decouples:

- d-axis and q-axis current cross-coupling
- back-EMF cross-coupling

The current frequency response is a first-order system, with a bandwidth of  $EV_{current}$ .

The block implements these equations.

| Calculation                                 | Equations                                                                          |
|---------------------------------------------|------------------------------------------------------------------------------------|
| Motor voltage, in the rotor reference frame |                                                                                    |
|                                             | $L_d \frac{di_d}{dt} = v_d - R_s i_d + p \omega_m L_q i_q$                         |
| Current regulator gains                     | $L_d \frac{di_q}{dt} = v_q - R_s i_q - p\omega_m L_d i_d - p\omega_m \lambda_{pm}$ |
|                                             | $\omega_b = 2\pi E V_{current}$                                                    |
|                                             | $K_{p_d} = L_d \omega_b$                                                           |
|                                             | $K_{p_q} = L_q \omega_b$                                                           |
|                                             | $K_i = R_s \omega_b$                                                               |

| Calculation        | Equations                                |
|--------------------|------------------------------------------|
| Transfer functions |                                          |
|                    |                                          |
|                    | $\underline{i_d} = \underline{\omega_b}$ |
|                    | $i_{dref}$ $s + \omega_b$                |
|                    |                                          |

The equations use these variables.  $s + \omega_b$ 

| $EV_{current}$ | Current regulator bandwidth       |
|----------------|-----------------------------------|
| i <sub>d</sub> | d-axis current                    |
| i <sub>q</sub> | q-axis current                    |
| $K_{p_d}$      | Current regulator d-axis gain     |
| $K_{p_q}$      | Current regulator q-axis gain     |
| $K_i$          | Current regulator integrator gain |
| $L_d$          | d-axis winding inductance         |
| $L_q$          | q-axis winding inductance         |
| $R_s$          | Stator phase winding resistance   |
| $\omega_m$     | Rotor speed                       |
| $v_d$          | d-axis voltage                    |
| $v_q$          | q-axis voltage                    |
| $\lambda_{pm}$ | Permanent magnet flux linkage     |
| Р              | Motor pole pairs                  |

## Transforms

To calculate the voltages and currents in balanced three-phase (a, b) quantities, quadrature two-phase  $(\alpha, \beta)$  quantities, and rotating (d, q) reference frames, the block uses the Clarke and Park Transforms.

In the transform equations.

$$\omega_{e} = P\omega_{m}$$
$$\frac{d\theta_{e}}{dt} = \omega_{e}$$

| Transform      | Description                                                                                                                                    | Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clarke         | Converts balanced three-phase quantities $(a, b)$ into balanced two-<br>phase quadrature quantities $(\alpha, \beta)$ .                        | $x_{\alpha} = \frac{2}{3}x_{a} - \frac{1}{3}x_{b} - \frac{1}{3}x_{c}$ $\sqrt{3} = \sqrt{3} = \sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Park           | Converts balanced two-phase<br>orthogonal stationary quantities<br>$(\alpha, \beta)$ into an orthogonal rotating<br>reference frame $(d, q)$ . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Inverse Clarke | Converts balanced two-phase quadrature quantities $(\alpha, \beta)$ into balanced three-phase quantities $(a, b)$ .                            | $x_a = x_a$ $x_b = -\frac{1}{2}x_\alpha + \frac{\sqrt{3}}{2}x_\beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Inverse Park   | Converts an orthogonal rotating<br>reference frame $(d, q)$ into<br>balanced two-phase orthogonal<br>stationary quantities $(\alpha, \beta)$ . | $\begin{aligned} x_{\alpha}^{c} &= \frac{1}{x_{2}} x_{\alpha} \delta_{\alpha} \delta_{e} \delta$ |

The transforms use these variables.

- $\omega_m$  Rotor speed
- *P* Motor pole pairs
- $\omega_e$  Rotor electrical speed
- $\Theta_e$  Rotor electrical angle
- *x* Phase current or voltage

### Motor

The block uses the phase currents and phase voltages to estimate the DC bus current. Positive current indicates battery discharge. Negative current indicates battery charge. The block uses these equations.

| Load power                                         | $Ld_{Pwr} = v_a i_a + v_b i_b + v_c i_c$                |
|----------------------------------------------------|---------------------------------------------------------|
| Source power                                       | $Src_{Pwr} = Ld_{Pwr} + Pwr_{Loss}$                     |
| DC bus current                                     | $i_{bus} = \frac{Src_{Pwr}}{v_{bus}}$                   |
| Estimated rotor torque                             | $MtrTrq_{est} = 1.5P[\lambda i_q + (L_d - L_q)i_d i_q]$ |
| Power loss for single efficiency<br>source to load | $Pwr_{Loss} = \frac{100 - Eff}{Eff} \cdot Ld_{Pwr}$     |
| Power loss for single efficiency<br>load to source | $Pwr_{Loss} = \frac{100 - Eff}{100} \cdot  Ld_{Pwr} $   |
| Power loss for tabulated efficiency                | $Pwr_{Loss} = f(\omega_m, MtrTrq_{est})$                |

The equations use these variables.

| $v_a$ , $v_b$ , $v_c$ | Stator phase a, b, c voltages |  |
|-----------------------|-------------------------------|--|
| $v_{bus}$             | Estimated DC bus voltage      |  |
| $i_a$ , $i_b$ , $i_c$ | Stator phase a, b, c currents |  |
| i <sub>bus</sub>      | Estimated DC bus current      |  |
| Eff                   | Overall inverter efficiency   |  |
| $\omega_m$            | Rotor mechanical speed        |  |
| $L_q$                 | q-axis winding inductance     |  |
| $L_d$                 | d-axis winding inductance     |  |
| i <sub>q</sub>        | q-axis current                |  |
|                       |                               |  |

| i <sub>d</sub> | d-axis current                |
|----------------|-------------------------------|
| λ              | Permanent magnet flux linkage |
| Р              | Motor pole pairs              |

### **Electrical Losses**

To specify the electrical losses, on the **Electrical Losses** tab, for **Parameterize losses by**, select one of these options.

| Setting                          | Block Implementation                                                                                                                                                                                                                        |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for inverter efficiency.                                                                                                                                                                  |  |
| Tabulated loss data              | Electrical loss calculated as a function of motor speeds and load torques.                                                                                                                                                                  |  |
| Tabulated efficiency<br>data     | <ul> <li>Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.</li> <li>Converts the efficiency values you provide into losses and uses the tabulated losses for simulation.</li> </ul> |  |
|                                  | <ul> <li>Ignores efficiency values you provide for zero speed or<br/>zero torque. Losses are assumed zero when either<br/>torque or speed is zero.</li> </ul>                                                                               |  |
|                                  | • Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.                                                       |  |
|                                  | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                                                                      |  |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

# Ports

## Input

SpdReq — Rotor speed command
scalar

Rotor speed command,  $\omega^*_m$ , in rad/s.

### Dependencies

To create this port, select Speed Control for the Control Type parameter.

# TrqCmd — Torque command

scalar

Torque command, *T*\*, in N.m.

### Dependencies

To create this port, select Torque Control for the Control Type parameter.

BusVolt — DC bus voltage
scalar

DC bus voltage  $v_{bus}$ , in V.

# PhaseCurrA — Current scalar

Stator current phase a,  $i_a$ , in A.

# PhaseCurrB — Current

Stator current phase b,  $i_b$ , in A.

SpdFdbk — Rotor speed
scalar

Rotor speed,  $\omega_m$ , in rad/s.

### PosFdbk — Rotor electrical angle

scalar

Rotor electrical angle,  $\Theta_m$ , in rad.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal    | Description            | Units |
|-----------|------------------------|-------|
| SrcPwr    | Source power           | W     |
| LdPwr     | Load power             | W     |
| PwrLoss   | Power loss             | W     |
| MtrTrqEst | Estimated motor torque | N.m   |

### BusCurr – Bus current

scalar

Estimated DC bus current,  $i_{bus}$ , in A.

### PhaseVolt — Stator terminal voltages

array

Stator terminal voltages,  $V_a$ ,  $V_b$ , and  $V_c$ , in V.

# **Parameters**

### Configuration

```
Control Type — Select control
Speed Control (default) | Torque Control
```

If you select Torque Control, the block does not implement the speed controller.

This table summarizes the port configurations.

| Port Configuration | Creates Ports |
|--------------------|---------------|
| Speed Control      | SpdReq        |
| Torque Control     | TrqCmd        |

#### **Motor Parameters**

### Stator resistance, Rs — Resistance

scalar

Stator phase winding resistance,  $R_s$ , in ohm.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                | Used to Derive                    |                    |
|--------------------------|-----------------------------------|--------------------|
|                          | Parameter                         | Tab                |
| Stator resistance,<br>Rs | D and Q axis integral gain,<br>Ki | Current Controller |

### DQ axis inductance, Ldq — Inductance

scalar

D-axis winding inductance,  $L_{dq}$ , in H.

### Dependencies

| Parameter                  | Used to Derive                                                                                              |                    |
|----------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|
|                            | Parameter                                                                                                   | Tab                |
| DQ axis<br>inductance, Ldq | D-axis proportional gain,<br>Kp_d<br>Q-axis proportional gain,<br>Kp_q<br>D and Q axis integral gain,<br>Ki | Current Controller |

# Permanent magnet flux, lambda\_pm — Flux scalar

Permanent magnet flux,  $\lambda_{pm}$ , in Wb.

## Number of pole pairs, PolePairs — Poles

scalar

Motor pole pairs, *P*.

# Physical inertia, viscous damping, static friction, Mechanical — Inertia, damping, friction

vector

Mechanical properties of the motor:

- Motor inertia,  $F_{\nu}$ , in kgm<sup>2</sup>
- Viscous friction torque constant,  $F_{v}$ , in N.m/(rad/s)
- Static friction torque constant,  $F_s$ , in N.m

### Dependencies

To enable this parameter, set the Control Type parameter to Speed Control.

For the gain calculations, the block uses the inertia from the **Physical inertia**, **viscous damping**, **static friction** parameter value that is on the **Motor Parameters** tab.

| Parameter                             | Used to Derive                      |                  |
|---------------------------------------|-------------------------------------|------------------|
|                                       | Parameter                           | Tab              |
| Physical inertia,<br>viscous damping, | Proportional gain, ba               | Speed Controller |
| static friction,                      | Angular gain, Ksa                   |                  |
| Mechanical                            | Rotational gain, Kisa               |                  |
|                                       | Inertia compensation,<br>Jcomp      |                  |
|                                       | Viscous damping<br>compensation, Fv |                  |
|                                       | Static friction, Fs                 |                  |

### Id and Iq Calculation

Maximum torque, T\_max — Torque
scalar

Maximum torque, in N.m.

### **Current Controller**

Bandwidth of the current regulator, EV\_current — Bandwidth
scalar

Current regulator bandwidth, in Hz.

### Dependencies

| Parameter                                            | Used to Derive                                                                                                  |                    |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|
|                                                      | Parameter                                                                                                       | Tab                |
| Bandwidth of the<br>current regulator,<br>EV_current | D-axis proportional gain,<br>Kp_d<br>Q-axis proportional gain,<br>Kp_q<br>D and q axis proportional<br>gain, Ki | Current Controller |

Sample time for the torque control, Tst - Time
scalar

Torque control sample time, in s.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                                     | Used to Derive           |                  |
|-----------------------------------------------|--------------------------|------------------|
|                                               | Parameter                | Tab              |
| Sample time for<br>the torque control,<br>Tst | Speed time constant, Ksf | Speed Controller |

## Calculate Current Regulator Gains — Derive parameters

button

Click to derive parameters.

#### Dependencies

On the **Current Controller** tab, when you select **Calculate Current Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

| Derived                                   | Dependency                                     |                    |
|-------------------------------------------|------------------------------------------------|--------------------|
| Parameter on<br>Current Controller<br>tab | Parameter                                      | Tab                |
| D-axis<br>proportional gain,              | Bandwidth of the current regulator, EV_current | Current Controller |
| Kp_d                                      | Stator resistance, Rs                          | Motor Parameters   |
| Q-axis<br>proportional gain,<br>Kp_q      | DQ-axis inductance, Ldq                        |                    |
| D and Q axis<br>integral gain, Ki         |                                                |                    |

D-axis proportional gain,  $Kp_d - Derived$ 

scalar

Derived d-axis proportional gain, in V/A.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                         | Dependency                                     |                    |  |
|-----------------------------------|------------------------------------------------|--------------------|--|
|                                   | Parameter Tab                                  |                    |  |
| D-axis proportional<br>gain, Kp_d | Bandwidth of the current regulator, EV_current | Current Controller |  |
|                                   | DQ-axis inductance, Ldq                        | Motor Parameters   |  |

**Q-axis proportional gain, Kp\_q — Derived** scalar

Derived q-axis proportional gain, in V/A.

### Dependencies

| Parameter                    | Dependency                                     |                    |
|------------------------------|------------------------------------------------|--------------------|
|                              | Parameter                                      | Tab                |
| Q-axis<br>proportional gain, | Bandwidth of the current regulator, EV_current | Current Controller |
| Kp_q                         | DQ-axis inductance, Ldq                        | Motor Parameters   |

## D and Q axis integral gain, $\mathrm{Ki}-\mathrm{Derived}$

scalar

Derived axis integral gain, in V/A\*s.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                         | Dependency                                     |                    |  |
|-----------------------------------|------------------------------------------------|--------------------|--|
|                                   | Parameter                                      | Tab                |  |
| D and Q axis<br>integral gain, Ki | Bandwidth of the current regulator, EV_current | Current Controller |  |
|                                   | Stator resistance, Rs                          | Motor Parameters   |  |
|                                   | DQ-axis inductance, Ldq                        |                    |  |

### **Speed Controller**

# Bandwidth of the motion controller, EV\_motion — Bandwidth vector

Motion controller bandwidth, in Hz. Set the first element of the vector to the desired cutoff frequency. Set the second and third elements of the vector to the higher-order cut off frequencies. You can set the value of the next element to 1/5 the value of the previous element. For example, if the desired cutoff frequency is 20 Hz, specify [20 4 0.8].

### Dependencies

The parameter is enabled when the **Control Type** parameter is set to Speed Control.

| Parameter        | Used to Derive        |                  |
|------------------|-----------------------|------------------|
|                  | Parameter             | Tab              |
| Bandwidth of the | Proportional gain, ba | Speed Controller |
| EV_motion        | Angular gain, Ksa     |                  |
|                  | Rotational gain, Kisa |                  |

### Bandwidth of the state filter, EV\_sf - Bandwidth

scalar

State filter bandwidth, in Hz.

#### Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

| Parameter                            | Used to Derive           |                  |
|--------------------------------------|--------------------------|------------------|
|                                      | Parameter                | Tab              |
| Bandwidth of the state filter, EV_sf | Speed time constant, Ksf | Speed Controller |

### Sample time for the motion control, ${\sf Tsm}-{\sf Time}$

scalar

Sample time for the motion controller, in s.

### Dependencies

The parameter is enabled when the **Control Type** parameter is set to **Speed Control**.

| Parameter                                     | Used to Derive                             |                  |
|-----------------------------------------------|--------------------------------------------|------------------|
|                                               | Parameter                                  | Tab              |
| Sample time for<br>the motion<br>control, Tsm | Proportional gain, ba<br>Angular gain, Ksa | Speed Controller |
|                                               | Rotational gain, Kisa                      |                  |

**Calculate Speed Regulator Gains — Derive parameters** button

Click to derive parameters.

### Dependencies

On the **Speed Controller** tab, when you select **Calculate Speed Regulator Gains**, the block calculates derived parameters. The table summarizes the derived parameters that depend on other block parameters.

| Derived Parameter on Speed Controller |                                                                          | Depends On                                                                                 |                    |
|---------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------|
| tab                                   |                                                                          | Parameter                                                                                  | Tab                |
| Proportional<br>gain, ba              | $b_{a} = \frac{J_{p} - J_{p} p_{1} p_{2} p_{3}}{T_{sm}}$                 | Sample time for<br>the motion<br>control, Tsm                                              | Speed Controller   |
|                                       |                                                                          | Bandwidth of<br>the motion<br>controller,<br>EV_motion<br>Bandwidth of<br>the state filter |                    |
|                                       |                                                                          | EV_sf                                                                                      |                    |
| Angular<br>gain, Ksa                  | $K_{sa} = \frac{J_p (p_1 p_2 + p_2 p_3 + p_3 p_1) - T_{sm}^2}{T_{sm}^2}$ | Sample <sub>b</sub> time for<br>the torque<br>control, Tst                                 | Current Controller |
| Rotational<br>gain, Kisa              | $K_{isa} = \frac{-J_p (p_1 + p_2 + p_3) + 3J_p}{T_{sm}^3}$               | Physical inertia,<br>b, $T_{sm} - K_{sa}T_{sm}$<br>viscous<br>damping, static<br>friction. | Motor Parameters   |
| Speed time<br>constant,<br>Ksf        | $K_{sf} = \frac{1 - \exp\left(-T_{sm} 2\pi E V_{sf}\right)}{T_{sm}}$     | Mechanical                                                                                 |                    |
| Inertia<br>compensatio<br>n, Jcomp    | $J_{comp} = J_p$                                                         | Physical inertia,<br>viscous<br>damping, static<br>friction,<br>Mechanical                 | Motor Parameters   |

| Derived Parameter on Speed Controller<br>tab |                | Depends On |     |
|----------------------------------------------|----------------|------------|-----|
|                                              |                | Parameter  | Tab |
| Viscous<br>damping<br>compensatio<br>n, Fv   | F <sub>v</sub> |            |     |
| Static<br>friction, Fs                       | $F_s$          |            |     |

The equations use these variables.

| Р                | Motor pole pairs                     |
|------------------|--------------------------------------|
| $b_a$            | Speed regulator proportional gain    |
| $K_{sa}$         | Speed regulator integral gain        |
| K <sub>isa</sub> | Speed regulator double integral gain |
| $K_{sf}$         | Speed regulator time constant        |
| $J_p$            | Motor inertia                        |
| $T_{sm}$         | Motion controller sample time        |
| $EV_{sf}$        | State filter bandwidth               |
| $EV_{motion}$    | Motion controller bandwidth          |

### Proportional gain, ba — Derived

scalar

Derived proportional gain, in N.m/(rad/s).

### Dependencies

| Parameter                | Dependency       Parameter     Tab                                   |                  |
|--------------------------|----------------------------------------------------------------------|------------------|
|                          |                                                                      |                  |
| Proportional gain,<br>ba | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

| Parameter | Dependency                                    |                  |
|-----------|-----------------------------------------------|------------------|
|           | Parameter                                     | Tab              |
|           | Bandwidth of the motion controller, EV_motion | Speed Controller |
|           | Sample time for the motion control, Tsm       |                  |

## Angular gain, Ksa — Derived

scalar

Derived angular gain, in N.m/rad.

### Dependencies

This table summarizes the parameter dependencies.

| Parameter         | Dependency                                                           |                  |
|-------------------|----------------------------------------------------------------------|------------------|
|                   | Parameter                                                            | Tab              |
| Angular gain, Ksa | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |
|                   | Bandwidth of the motion controller, EV_motion                        | Speed Controller |
|                   | Sample time for the motion control, Tsm                              |                  |

### Rotational gain, Kisa — Derived

scalar

Derived rotational gain, in N.m/(rad\*s).

### Dependencies
| Parameter                | Dependency                                                           |                  |
|--------------------------|----------------------------------------------------------------------|------------------|
|                          | Parameter                                                            | Tab              |
| Rotational gain,<br>Kisa | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |
|                          | Bandwidth of the motion controller, EV_motion                        | Speed Controller |
|                          | Sample time for the motion control, Tsm                              |                  |

Speed time constant, Ksf – Derived

scalar

Derived speed time constant, in 1/s.

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                   | Dependency                              |                    |
|-----------------------------|-----------------------------------------|--------------------|
|                             | Parameter                               | Tab                |
| Speed time<br>constant, Ksf | Sample time for the torque control, Tst | Current Controller |
|                             | Bandwidth of the state filter, EV_sf    | Speed Controller   |

### Inertia compensation, Jcomp — Derived

scalar

Derived inertia compensation, in kg\*m^2.

### Dependencies

This table summarizes the parameter dependencies.

| Parameter                         | Dependency                                                           |                  |
|-----------------------------------|----------------------------------------------------------------------|------------------|
|                                   | Parameter                                                            | Tab              |
| Inertia<br>compensation,<br>Jcomp | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

# Viscous damping compensation, Fv — Derived

scalar

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter                           | Dependency                                                           |                  |
|-------------------------------------|----------------------------------------------------------------------|------------------|
|                                     | Parameter                                                            | Tab              |
| Viscous damping<br>compensation, Fv | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

### Static friction, Fs — Derived

scalar

Derived static friction, in N.m/(rad/s).

#### Dependencies

This table summarizes the parameter dependencies.

| Parameter           | Dependency                                                           |                  |
|---------------------|----------------------------------------------------------------------|------------------|
|                     | Parameter                                                            | Tab              |
| Static friction, Fs | Physical inertia, viscous<br>damping, static friction,<br>Mechanical | Motor Parameters |

#### **Electrical Losses**

#### Parameterize losses by — Select type

```
Single efficiency measurement (default) | Tabulated loss data | Tabulated efficiency data
```

| Setting                          | Block Implementation                                                                                                                                                                                    |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single efficiency<br>measurement | Electrical loss calculated using a constant value for inverter efficiency.                                                                                                                              |
| Tabulated loss data              | Electrical loss calculated as a function of motor speeds and load torques.                                                                                                                              |
| Tabulated efficiency<br>data     | <ul><li>Electrical loss calculated using inverter efficiency that is a function of motor speeds and load torques.</li><li>Converts the efficiency values you provide into losses</li></ul>              |
|                                  | <ul> <li>and uses the tabulated losses for simulation.</li> <li>Ignores efficiency values you provide for zero speed or zero torque. Losses are assumed zero when either</li> </ul>                     |
|                                  | <ul> <li>Uses linear interpolation to determine losses. Provide tabulated data for low speeds and low torques, as required, to get the desired level of accuracy for lower power conditions.</li> </ul> |
|                                  | • Does not extrapolate loss values for speed and torque magnitudes that exceed the range of the table.                                                                                                  |

For best practice, use Tabulated loss data instead of Tabulated efficiency data:

- Efficiency becomes ill defined for zero speed or zero torque.
- You can account for fixed losses that are still present for zero speed or torque.

### **Overall inverter efficiency, eff — Constant**

scalar

Overall inverter efficiency, *Eff*, in %.

### Dependencies

To enable this parameter, for **Parameterize losses by**, select Tabulated loss data.

Vector of speeds (w) for tabulated loss, <code>w\_loss\_bp</code> — Breakpoints 1-by-M matrix

Speed breakpoints for lookup table when calculating losses, in rad/s.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

Vector of torques (T) for tabulated loss, T\_loss\_bp — Breakpoints 1-by-N matrix

Torque breakpoints for lookup table when calculating losses, in N.m.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

### Corresponding losses, losses\_table — Table

M-by-N matrix

Array of values for electrical losses as a function of M speeds and N torques, in W. Each value specifies the losses for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated loss data**.

# **Vector of speeds (w) for tabulated efficiency, w\_eff\_bp — Breakpoints** 1-by-M matrix

Speed breakpoints for lookup table when calculating efficiency, in rad/s.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

# Vector of torques (T) for tabulated efficiency, T\_eff\_bp — Breakpoints

1-by-N matrix

Torque breakpoints for lookup table when calculating efficiency, in N.m.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

## Corresponding efficiency, efficiency\_table — Table

M-by-N matrix

Array of efficiency as a function of M speeds and N torque, in %. Each value specifies the efficiency for a specific combination of speed and torque. The matrix size must match the dimensions defined by the speed and torque vectors.

The block ignores efficiency values for zero speed or zero torque. Losses are zero when either torque or speed is zero. The block uses linear interpolation.

To get the desired level of accuracy for lower power conditions, you can provide tabulated data for low speeds and low torques.

#### Dependencies

To enable this parameter, for **Parameterize losses by**, select **Tabulated efficiency** data.

### References

- [1] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors." *Proceedings of the IEEE*, Vol. 82, Issue 8, August 1994, pp. 1215–1240.
- [2] Shigeo Morimoto, Masayuka Sanada, Yoji Takeda. "Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator." *IEEE Transactions on Industry Applications*, Vol. 30, Issue 4, July/ August 1994, pp. 920–926.
- [3] Muyang Li. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.
- [4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current regulators using complex vectors." *IEEE Transactions on Industry Applications*, Vol. 36, Issue 3, May/June 2000, pp. 817–825.
- [5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction motors]."*IEEE Transactions on Industry Applications*, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42–50.

# See Also

Flux-Based PM Controller | IM Controller | Interior PM Controller | Surface Mount PMSM

Introduced in R2017a

# **SI Controller**

Spark-ignition engine controller that uses the driver torque request Library: Propulsion / Combustion Engine Controllers



# Description

The SI Controller block implements a spark-ignition (SI) controller that uses the driver torque request to calculate the open-loop air, fuel, and spark actuator commands that are required to meet the driver demand.

You can use the SI Controller block in engine control design or performance, fuel economy, and emission tradeoff studies. The core engine, throttle, and turbocharger wastegate subsystems require the commands that are output from the SI Controller block.

The block uses the commanded torque and engine speed to determine these open-loop actuator commands:

- Throttle position percent
- Wastegate area percent
- Injector pulse-width
- Spark advance
- Intake cam phaser angle
- Exhaust cam phaser angle
- Exhaust gas recirculation (EGR) valve area percent

The SI Controller block has two subsystems:

- The Controller subsystem Determines the commands based on the commanded torque, measured engine speed, and estimated cylinder air mass.
- The Estimator subsystem Determines the estimated air mass flow, torque, and exhaust gas temperature from intake manifold gas pressure, intake manifold gas temperature, engine speed, and cam phaser positions.

The figure illustrates the signal flow.



The figure uses these variables.

| N                   | Engine speed                                           |
|---------------------|--------------------------------------------------------|
| MAP                 | Cycle average intake manifold pressure                 |
| IAT                 | Intake air temperature                                 |
| T <sub>in,EGR</sub> | Temperature at EGR valve inlet                         |
| MAT                 | Cycle average intake manifold gas absolute temperature |
|                     |                                                        |

| $arphi_{ICP}$ ,                | Intake cam phaser angle and intake cam phaser angle command, respectively   |
|--------------------------------|-----------------------------------------------------------------------------|
| $\varphi_{ICPCMD}$             |                                                                             |
| $arphi_{ECP}$ ,                | Exhaust cam phaser angle and exhaust cam phaser angle command, respectively |
| $\varphi_{ECPCMD}$             |                                                                             |
| EGRap,<br>EGRap <sub>cmd</sub> | EGR valve area percent and EGR valve area percent command, respectively     |
| $\Delta P_{EGR}$               | Pressure difference at EGR valve inlet and outlet                           |
| $W\!AP_{cmd}$                  | Turbocharger wastegate area percent command                                 |
| SA                             | Spark advance                                                               |
| D                              | Fuel injector pulse-width                                                   |
| Pw <sub>inj</sub>              |                                                                             |
| $TPP_{cmd}$                    | Throttle position percent command                                           |

The Model-Based Calibration Toolbox was used to develop the tables that are available with the Powertrain Blockset.

## Controller

The block determines the commanded engine load (that is, normalized cylinder air mass) from a lookup table that is a function of commanded torque and measured engine speed.

$$L_{cmd} = f_{Lcmd} \left( T_{cmd}, N \right)$$

To achieve the commanded load, the controller sets the throttle position percent and turbocharger wastegate area percent using feed forward lookup tables. The lookup tables are functions of the commanded load and measured engine speed.

$$\begin{split} TAP_{cmd} &= f_{TAPcmd} \left( L_{cmd}, N \right) \\ TPP_{cmd} &= f_{TPPcmd} \left( TAP_{cmd} \right) \\ WAP_{cmd} &= f_{WAPcmd} \left( L_{cmd}, N \right) \end{split}$$

To determine the cam phaser angle commands, the block uses lookup tables that are functions of estimated engine load and measured engine speed.

$$\varphi_{ICPCMD} = f_{ICPCMD} \left( L_{est}, N \right)$$

 $\varphi_{ECPCMD} = f_{ECPCMD} \left( L_{est}, N \right)$ 

The block calculates the desired engine load using this equation.

 $L_{est} = \frac{CpsR_{air}T_{std}\dot{m}_{air,est}}{P_{std}V_dN}$ 

The equations use these variables.

| L <sub>est</sub>    | Estimated engine load                             |
|---------------------|---------------------------------------------------|
| $L_{cmd}$           | Commanded engine load                             |
| Ν                   | Engine speed                                      |
| T <sub>cmd</sub>    | Commanded engine torque                           |
| $TAP_{cmd}$         | Throttle area percent command                     |
| $TPP_{cmd}$         | Throttle position percent command                 |
| $W\!AP_{cmd}$       | Turbocharger wastegate area percent command       |
| Cps                 | Crankshaft revolutions per power stroke           |
| P <sub>std</sub>    | Standard pressure                                 |
| T <sub>std</sub>    | Standard temperature                              |
| R <sub>air</sub>    | Ideal gas constant for air and burned gas mixture |
| $V_d$               | Displaced volume                                  |
| $\dot{m}_{air,est}$ | Estimated engine air mass flow                    |

The controller subsystem uses these lookup tables for the air calculations.

The throttle area percent command lookup table,  $f_{TAPcmd}$  , is a function of commanded load and engine speed

 $TAP_{cmd} = f_{TAPcmd} \left( L_{cmd}, N \right)$ 

where:

- $TAP_{cmd}$  is throttle area percentage command, in percent.
- *L<sub>cmd</sub>=L* is commanded engine load, dimensionless.
- *N* is engine speed, in rpm.



• To account for the non-linearity of the throttle position to throttle area, the throttle position percent lookup table linearizes the open-loop air mass flow control.

The throttle position percent command lookup table,  $f_{TPPcmd}$  , is a function of the throttle area percentage command

 $TPP_{cmd} = f_{TPPcmd} \left( TAP_{cmd} \right)$ 

- *TPP<sub>cmd</sub>* is throttle position percentage command, in percent.
- *TAP<sub>cmd</sub>* is throttle area percentage command, in percent.



The wastegate area percent command lookup table,  $f_{\it WAPcmd}$  , is a function of the commanded engine load and engine speed

 $WAP_{cmd} = f_{WAPcmd} \left( L_{cmd}, N \right)$ 

- *WAP<sub>cmd</sub>* is wastegate area percentage command, in percent.
- *L<sub>cmd</sub>=L* is commanded engine load, dimensionless.
- *N* is engine speed, in rpm.



The commanded engine load lookup table,  $f_{Lcmd}$  , is a function of the commanded torque and engine speed

 $L_{cmd} = f_{Lcmd} \left( T_{cmd}, N \right)$ 

where:

- $L_{cmd} = L$  is commanded engine load, dimensionless.
- $T_{cmd}$  is commanded torque, in N.m.
- *N* is engine speed, in rpm.



The intake cam phaser angle command lookup table,  $f_{\it ICPCMD}$ , is a function of the engine load and engine speed

$$\varphi_{ICPCMD} = f_{ICPCMD} \left( L_{est}, N \right)$$

- $\varphi_{ICPCMD}$  is commanded intake cam phaser angle, in degrees crank advance.
- *L<sub>est</sub>=L* is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.



The exhaust cam phaser angle command lookup table,  $f_{\it ECPCMD}$  , is a function of the engine load and engine speed

$$\varphi_{ECPCMD} = f_{ECPCMD}(L_{est}, N)$$

where:

- $\varphi_{ECPCMD}$  is commanded exhaust cam phaser angle, in degrees crank retard.
- *L<sub>est</sub>=L* is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.



EGR is typically expressed as a percent of total intake port flow.

$$EGR_{pct} = 100 \frac{\dot{m}_{EGR}}{\dot{m}_{EGR} + \dot{m}_{air}}$$

To calculate the EGR area percent command, the block uses equations and a lookup table.

| Equations | $\dot{m}_{EGRstd,cmd} = \dot{m}_{EGR,cmd} \frac{P_{std}}{P_{in,EGR}} \sqrt{\frac{T_{in,EGR}}{T_{std}}}$ |
|-----------|---------------------------------------------------------------------------------------------------------|
|           | $\dot{m}_{EGRstd,max} = f_{EGRstd,max} \left( \frac{P_{out,EGR}}{P_{in,EGR}} \right)$                   |
|           | $\dot{m}_{EGR,cmd} = EGR_{pct,cmd}\dot{m}_{intk,est}$                                                   |



The equations and table use these variables.

 $EGRap, EGR \text{ valve area percent and EGR valve area percent command, respectively} \\ EGRap_{cmd}$ 

*EGR*<sub>pct,cmd</sub> EGR percent command

 $\dot{m}_{EGRstd.cmd}$  Commanded standard mass flow

| $\dot{m}_{EGRstd,max}$          | Maximum standard mass flow                           |
|---------------------------------|------------------------------------------------------|
| $\dot{m}_{EGR,cmd}$             | Commanded mass flow                                  |
| $\dot{m}_{intk,est}$            | Estimated intake port mass flow                      |
| $T_{std}$ , $P_{std}$           | Standard temperature and pressure                    |
| T <sub>in,EGR</sub>             | Temperature at EGR valve inlet                       |
| $P_{out,EGR}$ ,<br>$P_{in,EGR}$ | Pressure at EGR valve inlet and outlet, respectively |

The air-fuel ratio (AFR) impacts three-way-catalyst (TWC) conversion efficiency, torque production, and combustion temperature. The engine controller manages AFR by

commanding injector pulse-width from a desired relative AFR. The relative AFR,  $\lambda_{cmd}$ , is the ratio between the commanded AFR and the stoichiometric AFR of the fuel.

$$\lambda_{cmd} = \frac{AFR_{cmd}}{AFR_{stoich}}$$
$$AFR_{cmd} = \frac{\dot{m}_{air,est}}{\dot{m}_{fuel,cmd}}$$

The commanded lambda,  $\lambda_{cmd}$  , lookup table is a function of estimated engine load and measured engine speed

$$\lambda_{cmd} = f_{\lambda cmd} \left( L_{est}, N \right)$$

- $\lambda_{cmd}$  is commanded relative AFR, dimensionless.
- $L_{est}=L$  is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.



The block calculates the estimated fuel mass flow rate using the commanded lambda,

 $\lambda_{cmd}$  , stoichiometric AFR, and estimated air mass flow rate.

$$\dot{m}_{fuel,cmd} = \frac{\dot{m}_{air,est}}{AFR_{cmd}} = \frac{\dot{m}_{air,est}}{\lambda_{cmd}AFR_{stoich}}$$

The block assumes that the battery voltage and fuel pressure are at nominal settings where pulse-width correction is not necessary. The commanded fuel injector pulse-width is proportional to the fuel mass per injection. The fuel mass per injection is calculated from the commanded fuel mass flow rate, engine speed, and the number of cylinders.

$$Pw_{inj} = \begin{cases} \frac{\dot{m}_{fuel,cmd}Cps(\frac{60s}{min})\left(\frac{1000mg}{g}\right)\left(\frac{1000g}{kg}\right)}{NS_{inj}N_{cyl}} & \text{when } Trq_{cmd} > 0\\ 0 & \text{when } Trq_{cmd} \le 0 \end{cases}$$

The equations use these variables.

| $\lambda_{cmd}$    | Lambda command, relative AFR                                 |
|--------------------|--------------------------------------------------------------|
| L <sub>est</sub>   | Estimated engine load, based on normalized cylinder air mass |
| Ν                  | Engine speed                                                 |
| Trq <sub>cmd</sub> | Commanded engine torque                                      |
| $AFR_{stoich}$     | Stoichiometric fuel AFR                                      |
|                    |                                                              |

| $AFR_{cmd}$     | Commanded AFR                  |
|-----------------|--------------------------------|
|                 | Estimated engine air mass flow |
| $m_{air,est}$   |                                |
|                 | Commanded fuel mass flow       |
| $m_{fuel,cmd}$  |                                |
|                 | Number of engine cylinders     |
| $N_{cyl}$       |                                |
| a               | Fuel injector slope            |
| $S_{inj}$       |                                |
| D               | Fuel injector pulse-width      |
| $Pw_{inj}$      |                                |
| £               | Relative AFR lookup table      |
| $I \lambda cmd$ |                                |

Spark advance is the crank angle before top dead center (BTDC) of the power stroke when the spark is delivered. The spark advance has an impact on engine efficiency, torque, exhaust temperature, knock, and emissions.

The spark advance lookup table is a function of estimated load and engine speed.

$$SA = f_{SA}(L_{est}, N)$$

- *SA* is spark advance, in crank advance degrees.
- *L<sub>est</sub>=L* is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.



The equations use these variables.

| $L_{est}$ | Estimated engine load, based on normalized cylinder air mass |
|-----------|--------------------------------------------------------------|
| Ν         | Engine speed                                                 |
| $f_{SA}$  | Lookup table for spark advance                               |
| Ν         | Spark advance                                                |

When the commanded torque is below a threshold value, the idle speed controller regulates the engine speed.

| lf                                          | Idle Speed Controller |
|---------------------------------------------|-----------------------|
| $Trq_{cmd,input} < Trq_{idlecmd,enable}$    | Enabled               |
| $Trq_{idlecmd,enable} \leq Trq_{cmd,input}$ | Not enabled           |

The idle speed controller uses a discrete PI controller to regulate the target idle speed by commanding a torque.

The PI controller uses this transfer function:

$$C_{idle}(z) = K_{p,idle} + K_{i,idle} \frac{t_s}{z-1}$$

The idle speed commanded torque must be less than the maximum commanded torque:

 $0 \leq Trq_{idlecomd} \leq Trq_{idlecmd,max}$ 

Idle speed control is active under these conditions. If the commanded input torque drops below the threshold for enabling the idle speed controller ( $Trq_{cmd,input} < Trq_{idlecmd,enable}$ ), the commanded engine torque is given by:

 $Trq_{cmd} = \max(Trq_{cmd,input}, Trq_{idlecmd}).$ 

The equations use these variables.

| Trq <sub>cmd</sub>       | Commanded engine torque       |
|--------------------------|-------------------------------|
| Trq <sub>cmd,input</sub> | Input commanded engine torque |

| Trq <sub>idlecmd,enable</sub> | Threshold for enabling idle speed controller |
|-------------------------------|----------------------------------------------|
| Trq <sub>idlecmd</sub>        | Idle speed controller commanded torque       |
| Trq <sub>idlecmd,max</sub>    | Maximum commanded torque                     |
| $N_{idle}$                    | Base idle speed                              |
| $K_{p,idle}$                  | Idle speed controller proportional gain      |
| $K_{i,idle}$                  | Idle speed controller integral gain          |

## Estimator

The estimator subsystem determines the estimated air mass flow, torque, EGR mass flow, and exhaust temperature based on sensor feedback and calibration parameters.

|                          | Estimated engine air mass flow       |
|--------------------------|--------------------------------------|
| $\dot{m}_{air,est}$      | -                                    |
| <i>Trq<sub>est</sub></i> | Estimated engine torque              |
| T <sub>exh,est</sub>     | Estimated engine exhaust temperature |
|                          | Estimated low-pressure EGR mass flow |
| $\dot{m}_{EGR,est}$      |                                      |

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

| Air Mass Flow Model                              | Description                                                                                                                                                                                                                                              |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Speed-Density Air<br>Mass Flow Model" | Uses the speed-density equation to calculate the<br>engine air mass flow, relating the engine air mass<br>flow to the intake manifold pressure and engine<br>speed. Consider using this air mass flow model in<br>engines with fixed valvetrain designs. |

| Air Mass Flow Model                                            | Description                                                                                                                                                                        |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Dual-Independent Cam<br>Phaser Air Mass Flow Model" | To calculate the engine air mass flow, the dual-<br>independent cam phaser model uses:                                                                                             |
|                                                                | • Empirical calibration parameters developed from engine mapping measurements                                                                                                      |
|                                                                | <ul> <li>Desktop calibration parameters derived from<br/>engine computer-aided design (CAD) data</li> </ul>                                                                        |
|                                                                | In contrast to typical embedded air mass flow<br>calculations based on direct air mass flow<br>measurement with an air mass flow (MAF) sensor,<br>this air mass flow model offers: |
|                                                                | • Elimination of MAF sensors in dual cam-phased valvetrain applications                                                                                                            |
|                                                                | • Reasonable accuracy with changes in altitude                                                                                                                                     |
|                                                                | Semiphysical modeling approach                                                                                                                                                     |
|                                                                | Bounded behavior                                                                                                                                                                   |
|                                                                | • Suitable execution time for electronic control unit (ECU) implementation                                                                                                         |
|                                                                | <ul> <li>Systematic development of a relatively small<br/>number of calibration parameters</li> </ul>                                                                              |

To determine the estimated air mass flow, the block uses the intake air mass fraction. The EGR mass fraction at the intake port lags the mass fraction near the EGR valve outlet. To model the lag, the block uses a first order system with a time constant.

$$y_{intk,EGR,est} = \frac{\dot{m}_{EGR,est}}{\dot{m}_{intk,est}} \frac{t_s z}{\tau_{EGR} z + t_s - \tau_{EGR}}$$

The remainder of the gas is air.

$$y_{intk,air,est} = 1 - y_{intk,EGR,est}$$

The equations use these variables.

| <b>Y</b> intk,EGR,est                         | Estimated intake manifold EGR mass fraction |
|-----------------------------------------------|---------------------------------------------|
| Yintk,air,est                                 | Estimated intake manifold air mass fraction |
|                                               | Estimated low-pressure EGR mass flow        |
| m <sub>EGR,est</sub><br>ṁ <sub>intk,est</sub> | Estimated intake port mass flow             |
| $	au_{EGR}$                                   | EGR time constant                           |

To calculate the brake torque, configure the SI engine to use either of these torque models.

| Brake Torque Model                    | Description                                                                                                                                                                    |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Torque Structure<br>Model" | For the structured brake torque calculation, the SI<br>engine uses tables for the inner torque, friction<br>torque, optimal spark, spark efficiency, and lambda<br>efficiency. |
| "SI Engine Simple Torque Model"       | For the simple brake torque calculation, the SI<br>engine block uses a torque lookup table map that is<br>a function of engine speed and load.                                 |

The controller estimates low-pressure mass flow, EGR valve inlet pressure, and EGR valve outlet pressure using an algorithm developed by F. Liu and J. Pfeiffer. The estimator requires measured EGR valve differential pressure, EGR valve area percent, intake air temperature, and EGR valve inlet temperature.

To estimate the EGR valve commands, the block uses:

• Equations

$$\dot{m}_{air,std} = \dot{m}_{air,est} \frac{P_{std}}{P_{amb}} \sqrt{\frac{IAT}{T_{std}}}$$

$$P_{in,EGR} = P_{out,EGR} + \Delta P_{EGR}$$

$$\dot{m}_{\textit{EGR},est} = \dot{m}_{\textit{EGR},std} \; \frac{P_{in,\textit{EGR}}}{P_{std}} \sqrt{\frac{T_{std}}{T_{in,\textit{EGR}}}}$$

- Tables
  - The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio

$$\dot{m}_{EGR,std} = f_{EGR,std} \left( EGRap, \frac{P_{out,EGR}}{P_{in,EGR}} \right)$$

- $\dot{m}_{EGR,std}$  is EGR valve standard mass flow, dimensionless.
- *EGRap* is EGR valve flow area percent, in percent.
- $P_{out,EGR}$





• The pressure ratio is a function of the standard mass flow

$$\frac{P_{out,EGR}}{P_{amb}} = f_{intksys,pr}(\dot{m}_{air,std})$$

where:

- $\dot{m}_{air,std}$  is standard mass flow, in g/s.
- $\frac{P_{out,EGR}}{P_{amb}}$  is pressure ratio, dimensionless.



The equations use these variables.

| EGRap                                     | EGR valve area percent command                      |
|-------------------------------------------|-----------------------------------------------------|
| IAT                                       | Intake air temperature                              |
| $\dot{m}_{air,std}$ ,                     | Standard air and EGR valve mass flow, respectively  |
| $\dot{m}_{EGR,std}$                       |                                                     |
|                                           | Estimated air and EGR valve mass flow, respectively |
| $\dot{m}_{air,est}$ , $\dot{m}_{EGR,est}$ |                                                     |
| $T_{std}$ , $P_{std}$                     | Standard temperature and pressure                   |
| $T_{amb}, P_{amb}$                        | Ambient temperature and pressure                    |

| $\Delta P_{EGR}$             | Pressure difference at EGR valve inlet and outlet       |
|------------------------------|---------------------------------------------------------|
| $T_{in,EGR}$ , $T_{out,EGR}$ | Temperature at EGR valve inlet and outlet, respectively |
| $P_{in,EGR}$ , $P_{out,EGR}$ | Pressure at EGR valve inlet and outlet, respectively    |

The exhaust temperature lookup table,  $f_{Texh}$  , is a function of engine load and engine speed

$$T_{exh} = f_{Texh}(L, N)$$

where:

- $T_{exh}$  is engine exhaust temperature, in K.
- *L* is normalized cylinder air mass or engine load, dimensionless.
- *N* is engine speed, in rpm.



# Ports

## Input

TrqCmd — Commanded engine torque
scalar

Commanded engine torque,  $Trq_{cmd,input}$ , in N.m.

EngSpd — Measured engine speed
scalar

Measured engine speed, *N*, in rpm.

AmbPrs — Measured absolute ambient pressure
scalar

Measured ambient pressure,  $P_{Amb}$ , in Pa.

Map — Measured intake manifold absolute pressure scalar

Measured intake manifold absolute pressure MAP , in Pa.

Mat — Measured intake manifold absolute temperature scalar

Measured intake manifold absolute temperature, MAT, in K.

IntkCamPhase — Intake cam phaser angle
scalar

Intake cam phaser angle,  $\varphi_{ICP}$ , in degCrkAdv, or degrees crank advance.

ExhCamPhase — Exhaust cam phaser angle scalar

Exhaust cam phaser angle,  $\varphi_{ECP}$ , in degCrkRet, or degrees crank retard.

### Iat - Intake air temperature

scalar

Intake air temperature, *IAT*, in K.

Ect — Engine cooling temperature scalar

Engine cooling temperature,  $T_{coolant}$ , in K.

## EgrVlvInTemp — EGR valve inlet temperature

scalar

EGR value inlet temperature,  $T_{in,EGR}$ , in K.

## EgrVlvAreaPct — EGR valve area percent

scalar

EGR valve area percent, EGRap, in %.

# EgrVlvDeltaPrs — EGR valve delta pressure

scalar

EGR valve delta pressure,  $\Delta P_{EGR}$ , in Pa.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal          | Description                        | Variable                 | Units     |
|-----------------|------------------------------------|--------------------------|-----------|
| TrqCmd          | Engine torque                      | <i>Trq<sub>cmd</sub></i> | N.m       |
| LdCmd           | Commanded load                     | L <sub>cmd</sub>         | N/A       |
| ThrPosCmd       | Throttle area percent<br>command   | TAP <sub>cmd</sub>       | %         |
| WgAreaPctCmd    | Wastegate area percent<br>command  | WAP <sub>cmd</sub>       | %         |
| InjPw           | Fuel injector pulse-width          | Pwinj                    | ms        |
| SpkAdv          | Spark advance                      | SA                       | degBTDC   |
| IntkCamPhaseCmd | Intake cam phaser angle<br>command | φ <sub>ICPCMD</sub>      | degCrkAdv |
| ExhCamPhaseCmd  | Exhaust cam phaser angle command   | φ <sub>ECPCMD</sub>      | degCrkRet |

| Signal            | Description                                   | Variable              | Units |
|-------------------|-----------------------------------------------|-----------------------|-------|
| EgrVlvAreaPctCmd  | Exhaust cam phaser angle<br>command           | EGRap <sub>cmd</sub>  | %     |
| FuelMassFlwCmd    | EGR valve area percent<br>command             | m <sub>fuel,cmd</sub> | kg/s  |
| AfrCmd            | Commanded air-fuel ratio                      | $AFR_{cmd}$           | N/A   |
| EstEngTrq         | Estimated engine torque                       | Trq <sub>est</sub>    | N.m   |
| EstNrmlzdAirCharg | Estimated normalized cylinder air mass        | N/A                   | N/A   |
| EstIntkPortFlw    | Estimated air mass flow rate                  | m <sub>air,est</sub>  | kg/s  |
| EstExhManGasTemp  | Estimated exhaust manifold<br>gas temperature | T <sub>exh,est</sub>  | К     |

## ThrPosPctCmd — Throttle area percent command

scalar

Throttle area percent command,  $TAP_{cmd}$ .

### WgAreaPctCmd — Wastegate area percent command

scalar

Wastegate area percent command, *WAP<sub>cmd</sub>*.

### InjPw — Fuel injector pulse-width

scalar

Fuel injector pulse-width,  $Pw_{inj}$ , in ms.

# SpkAdv — Spark advance scalar

Spark advance, SA, in degrees crank angle before top dead center (degBTDC).

# IntkCamPhaseCmd — Intake cam phaser angle command scalar

Intake cam phaser angle command,  $\varphi_{ICPCMD}$  .

# ExhCamPhaseCmd — Exhaust cam phaser angle command scalar

Exhaust cam phaser angle command,  $\varphi_{ECPCMD}$ .

EgrVlvAreaPctCmd — EGR valve area percent command
scalar

EGR valve area percent command,  $EGRap_{cmd}$ , in %.

# **Parameters**

## Configuration

Air mass flow estimation model — Select air mass flow estimation model Dual Variable Cam Phasing (default) | Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

| Air Mass Flow Model                              | Description                                                                                                                                                                                                                                              |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Speed-Density Air<br>Mass Flow Model" | Uses the speed-density equation to calculate the<br>engine air mass flow, relating the engine air mass<br>flow to the intake manifold pressure and engine<br>speed. Consider using this air mass flow model in<br>engines with fixed valvetrain designs. |

| Air Mass Flow Model                                            | Description                                                                                                                                                                        |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Dual-Independent Cam<br>Phaser Air Mass Flow Model" | To calculate the engine air mass flow, the dual-<br>independent cam phaser model uses:                                                                                             |
|                                                                | • Empirical calibration parameters developed from engine mapping measurements                                                                                                      |
|                                                                | Desktop calibration parameters derived from<br>engine computer-aided design (CAD) data                                                                                             |
|                                                                | In contrast to typical embedded air mass flow<br>calculations based on direct air mass flow<br>measurement with an air mass flow (MAF) sensor,<br>this air mass flow model offers: |
|                                                                | • Elimination of MAF sensors in dual cam-phased valvetrain applications                                                                                                            |
|                                                                | • Reasonable accuracy with changes in altitude                                                                                                                                     |
|                                                                | Semiphysical modeling approach                                                                                                                                                     |
|                                                                | Bounded behavior                                                                                                                                                                   |
|                                                                | • Suitable execution time for electronic control unit (ECU) implementation                                                                                                         |
|                                                                | • Systematic development of a relatively small number of calibration parameters                                                                                                    |

### Dependencies

The table summarizes the parameter dependencies.

| Air Mass Flow<br>Estimation<br>Model | Enables Parameters on Estimation > Air Tab                                      |
|--------------------------------------|---------------------------------------------------------------------------------|
| Dual Variable                        | Cylinder volume at intake valve close table, f_vivc                             |
| Cam Phasing                          | Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt                    |
|                                      | Cylinder trapped mass correction factor, f_tm_corr                              |
|                                      | Normalized density breakpoints, f_tm_corr_nd_bpt                                |
|                                      | Engine speed breakpoints, f_tm_corr_n_bpt                                       |
|                                      | Air mass flow, f_mdot_air                                                       |
|                                      | Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt                               |
|                                      | Trapped mass flow breakpoints, f_mdot_trpd_bpt                                  |
|                                      | Air mass flow correction factor, f_mdot_air_corr                                |
|                                      | Engine load breakpoints for air mass flow correction,<br>f_mdot_air_corr_ld_bpt |
|                                      | Engine speed breakpoints for air mass flow correction,<br>f_mdot_air_n_bpt      |
| Simple Speed-                        | Speed-density volumetric efficiency, f_nv                                       |
| Density                              | Speed-density intake manifold pressure breakpoints,<br>f_nv_prs_bpt             |
|                                      | Speed-density engine speed breakpoints, f_nv_n_bpt                              |

# Torque estimation model — Select torque estimation model

Torque Structure (default) | Simple Torque Lookup

To calculate the brake torque, configure the SI engine to use either of these torque models.

| Brake Torque Model                    | Description                                                                                                                                                                    |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Torque Structure<br>Model" | For the structured brake torque calculation, the SI<br>engine uses tables for the inner torque, friction<br>torque, optimal spark, spark efficiency, and lambda<br>efficiency. |
| "SI Engine Simple Torque Model"       | For the simple brake torque calculation, the SI<br>engine block uses a torque lookup table map that is<br>a function of engine speed and load.                                 |

### Dependencies

The table summarizes the parameter dependencies.

| Torque Estimation<br>Model | Enables Parameters on Estimation > Torque Tab                      |
|----------------------------|--------------------------------------------------------------------|
| Torque Structure           | Inner torque table, f_tq_inr                                       |
|                            | Friction torque table, f_tq_fric                                   |
|                            | Engine temperature modifier on friction torque,<br>f_fric_temp_mod |
|                            | Engine temperature modifier breakpoints,<br>f_fric_temp_bpt        |
|                            | Pumping torque table, f_tq_pump                                    |
|                            | Optimal spark table, f_sa_opt                                      |
|                            | Inner torque load breakpoints, f_tq_inr_l_bpt                      |
|                            | Inner torque speed breakpoints, f_tq_inr_n_bpt                     |
|                            | Spark efficiency table, f_m_sa                                     |
|                            | Spark retard from optimal, f_del_sa_bpt                            |
|                            | Lambda efficiency, f_m_lam                                         |
|                            | Lambda breakpoints, f_m_lam_bpt                                    |

| Torque Estimation<br>Model | Enables Parameters on Estimation > Torque Tab                         |
|----------------------------|-----------------------------------------------------------------------|
| Simple Torque<br>Lookup    | Torque table, f_tq_nl<br>Torque table load breakpoints, f_tq_nl_l_bpt |
|                            | Torque table speed breakpoints, f_tq_nl_n_bpt                         |

### Controls

Air

Engine commanded load table, f\_lcmd — Lookup table
array

The commanded engine load lookup table,  $f_{{\it Lcmd}}$  , is a function of the commanded torque and engine speed

$$L_{cmd} = f_{Lcmd} \left( T_{cmd}, N \right)$$

- $L_{cmd} = L$  is commanded engine load, dimensionless.
- $T_{cmd}$  is commanded torque, in N.m.
- *N* is engine speed, in rpm.



# Torque command breakpoints, f\_lcmd\_tq\_bpt — Breakpoints array

Torque command breakpoints, in N.m.

```
Speed breakpoints, f_lcmd_n_bpt — Breakpoints
```

array

Speed breakpoints, in rpm.

Throttle area percent, f\_tap — Lookup table, %
array

The throttle area percent command lookup table,  $f_{T\!AP\!cmd}$  , is a function of commanded load and engine speed

$$TAP_{cmd} = f_{TAPcmd} \left( L_{cmd}, N \right)$$

where:

- *TAP<sub>cmd</sub>* is throttle area percentage command, in percent.
- $L_{cmd}=L$  is commanded engine load, dimensionless.
- *N* is engine speed, in rpm.



# Throttle area percent load breakpoints, f\_tap\_ld\_bpt — Breakpoints array

Throttle area percent load breakpoints, dimensionless.

# Throttle area percent speed breakpoints, f\_tap\_n\_bpt — Breakpoints array

Throttle area percent speed breakpoints, in rpm.

# **Throttle area percent to position percent table, f\_tpp — Lookup table** array

The throttle position percent command lookup table,  $f_{T\!P\!P\!c\!md}$  , is a function of the throttle area percentage command

$$TPP_{cmd} = f_{TPPcmd} \left( TAP_{cmd} \right)$$

where:

- *TPP<sub>cmd</sub>* is throttle position percentage command, in percent.
- *TAP<sub>cmd</sub>* is throttle area percentage command, in percent.



# Throttle area percent to position percent area breakpoints, f\_tpp\_tap\_bpt — Breakpoints

array

Throttle area percent to position percent area breakpoints, dimensionless.

# Wastegate area percent, f\_wap — Lookup table, % array
The wastegate area percent command lookup table,  $f_{W\!APcmd}$  , is a function of the commanded engine load and engine speed

$$WAP_{cmd} = f_{WAPcmd} \left( L_{cmd}, N \right)$$

where:

- $WAP_{cmd}$  is wastegate area percentage command, in percent.
- *L<sub>cmd</sub>=L* is commanded engine load, dimensionless.
- *N* is engine speed, in rpm.



# Load breakpoints, f\_wap\_ld\_bpt — Breakpoints array

Load breakpoints, dimensionless.

# Speed breakpoints, f\_wap\_n\_bpt — Breakpoints, rpm array

Speed breakpoints, in rpm.

## Intake cam phaser angle, $f_icp - Lookup table$

array

The intake cam phaser angle command lookup table,  $f_{\it ICPCMD}$  , is a function of the engine load and engine speed

$$\varphi_{ICPCMD} = f_{ICPCMD} \left( L_{est}, N \right)$$

where:

- $\varphi_{ICPCMD}$  is commanded intake cam phaser angle, in degrees crank advance.
- *L<sub>est</sub>=L* is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.



Exhaust cam phaser angle, f\_ecp — Lookup table
array

The exhaust cam phaser angle command lookup table,  $f_{\it ECPCMD}$  , is a function of the engine load and engine speed

 $\varphi_{ECPCMD} = f_{ECPCMD} \left( L_{est}, N \right)$ 

where:

- $\varphi_{ECPCMD}$  is commanded exhaust cam phaser angle, in degrees crank retard.
- $L_{est}=L$  is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.



Load breakpoints, f\_cp\_ld\_bpt — Breakpoints
array

Load breakpoints, dimensionless.

## Speed breakpoints, f\_cp\_n\_bpt — Breakpoints

array

Speed breakpoints, in rpm.

# Commanded EGR percent, f\_egrpct\_cmd — Lookup table array

The EGR percent command,  $EGR_{\it pct, cmd}$  , lookup table is a function of estimated engine load and engine speed

$$EGR_{pct,cmd} = f_{EGRpct,cmd}(L_{est}, N)$$

where:

- *EGR*<sub>*pct,cmd*</sub> is commanded EGR percent, dimensionless.
- *L<sub>est</sub>=L* is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.



# Load breakpoints, f\_egrpct\_ld\_bpt — Breakpoints vector

Engine load breakpoints, *L*, dimensionless.

# Speed breakpoints, f\_egrpct\_n\_bpt - Breakpoints vector

Engine speed breakpoints, *N*, in rpm.

# EGR valve area percent, f\_egr\_areapct\_cmd — Lookup table array

The EGR area percent command,  $EGRap_{cmd}$ , lookup table is a function of the normalized mass flow and pressure ratio

$$EGRap_{cmd} = f_{EGRap,cmd} \left( \frac{\dot{m}_{EGRstd,cmd}}{\dot{m}_{EGRstd,max}}, \frac{P_{out,EGR}}{P_{in,EGR}} \right)$$

where:

- *EGRap<sub>cmd</sub>* is commanded EGR area percent, dimensionless.
- *m*<sub>EGRstd,cmd</sub>

 $\dot{m}_{EGRstd,max}$  is the normalized mass flow, dimensionless.

•  $P_{out,EGR}$ 

 $P_{in,EGR}$  is the pressure ratio, dimensionless.



# **Open EGR valve standard flow, f\_egr\_max\_stdflow — Breakpoints** vector

Maximum standard EGR valve mass flow breakpoints,  $\dot{m}_{EGRstd,max}$  , in N.m.

### Normalized EGR valve standard flow breakpoints, f\_egr\_areapct\_nrmlzdflow\_bpt — Breakpoints vector

 $\dot{m}_{EGRstd,cmd}$ 

Normalized mass flow breakpoints,  $\dot{m}_{EGRstd,max}$  , dimensionless.

# EGR valve pressure ratio breakpoints, f\_egr\_areapct\_pr\_bpt — Breakpoints

vector

## $P_{out,EGR}$

Pressure ratio breakpoints,  $\ ^{P_{in,EGR}}$  , dimensionless.

Fuel

Injector slope, Sinj — Slope
scalar

Fuel injector slope,  $S_{ini}$ , in mg/ms.

# Stoichiometric air-fuel ratio, afr\_stoich - Ratio scalar

Stoichiometric air-fuel ratio, *AFR*<sub>stoich</sub>.

# **Relative air-fuel ratio lambda, f\_lam — Air-fuel-ratio (AFR) lookup table** array

The commanded lambda,  $\lambda_{cmd}$  , lookup table is a function of estimated engine load and measured engine speed

$$\lambda_{cmd} = f_{\lambda cmd} \left( L_{est}, N \right)$$

where:

- $\lambda_{cmd}$  is commanded relative AFR, dimensionless.
- $L_{est}=L$  is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.



Load breakpoints, f\_lam\_ld\_bpt — Breakpoints
array

Load breakpoints, dimensionless.

Speed breakpoints, f\_lam\_n\_bpt - Breakpoints
array

Speed breakpoints, in rpm.

### Spark

Spark advance table, f\_sa — Lookup table
array

The spark advance lookup table is a function of estimated load and engine speed.

$$SA = f_{SA}(L_{est}, N)$$

where:

- *SA* is spark advance, in crank advance degrees.
- $L_{est}=L$  is estimated engine load, dimensionless.
- *N* is engine speed, in rpm.



Load breakpoints, f\_sa\_ld\_bpt — Breakpoints
array

Load breakpoints, dimensionless.

Speed breakpoints, f\_sa\_n\_bpt - Breakpoints
array

Speed breakpoints, in rpm.

### Idle Speed

Target idle speed, N\_idle - Speed
scalar

Target idle speed,  $N_{idle}$ , in rpm.

# Enable torque command limit, Trq\_idlecmd\_enable — Torque scalar

Torque to enable the idle speed controller,  $Trq_{idlecmd,enable}$ , in N.m.

Maximum torque command, Trq\_idlecmd\_max — Torque
scalar

Maximum idle controller commanded torque, *Trq<sub>idlecmd,max</sub>*, in N.m.

```
Proportional gain, Kp_idle - Pl Controller
scalar
```

Proportional gain for idle speed control,  $K_{p,idle}$ , in N.m/rpm.

```
Integral gain, Ki_idle - PI Controller
scalar
```

Integral gain for idle speed control,  $K_{iidle}$ , in N.m/(rpm\*s).

## Estimation

Air

Number of cylinders, NCyl — Engine cylinders scalar

Number of engine cylinders,  $N_{cvl}$ .

**Crank revolutions per power stroke, Cps — Revolutions per stroke** scalar

Crankshaft revolutions per power stroke, Cps, in rev/stroke.

**Total displaced volume, Vd — Volume** scalar

Displaced volume,  $V_d$ , in m^3.

# Ideal gas constant air, Rair - Constant scalar

Ideal gas constant,  $R_{air}$ , in J/(kg\*K).

Air standard pressure, Pstd — Pressure scalar

Standard air pressure,  $P_{std}$ , in Pa.

# Air standard temperature, Tstd — Temperature scalar

Standard air temperature,  $T_{std}$ , in K.

# Speed-density volumetric efficiency, f\_nv — Lookup table array

The engine volumetric efficiency lookup table,  $f_{\eta_v}$ , is a function of intake manifold absolute pressure and engine speed

$$\eta_v = f_{\eta_v}(M\!AP, N)$$

where:

•

- $\eta_v$  is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.



To enable this parameter, for the **Air mass flow estimation model** parameter, select Simple Speed-Density.

# Speed-density intake manifold pressure breakpoints, f\_nv\_prs\_bpt — Breakpoints

array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

### Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Simple Speed-Density.

Speed-density engine speed breakpoints, f\_nv\_n\_bpt — Breakpoints
array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

### Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Simple Speed-Density.

# Cylinder volume at intake valve close table, f\_vivc — 2-D lookup table $\operatorname{array}$

The cylinder volume at intake value close table (IVC),  $f_{Vivc}$  is a function of the intake cam phaser angle

$$V_{IVC} = f_{Vivc}(\varphi_{ICP})$$

where:

 $V_{IVC}$  is cylinder volume at IVC, in L.

 $\varphi_{ICP}$  is intake cam phaser angle, in crank advance degrees.



### Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

# Engine speed breakpoints, f\_tm\_corr\_n\_bpt — Breakpoints array

Engine speed breakpoints, in rpm.

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

# Cylinder volume intake cam phase breakpoints, f\_vivc\_icp\_bpt — Breakpoints

array

Cylinder volume at intake valve close table breakpoints.

### Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

**Cylinder trapped mass correction factor, f\_tm\_corr — Lookup table** array

The trapped mass correction factor table,  $f_{TMcorr}$ , is a function of the normalized density and engine speed

 $TM_{corr} = f_{TMcorr}(\rho_{norm}, N)$ 

where:

 $TM_{corr}$ , is trapped mass correction multiplier, dimensionless.

 $\rho_{norm}$  is normalized density, dimensionless.

• *N* is engine speed, in rpm.



To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

# Normalized density breakpoints, f\_tm\_corr\_nd\_bpt — Breakpoints array

Normalized density breakpoints.

### Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

# Intake mass flow, f\_mdot\_intk — Lookup table array

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow

```
\dot{m}_{intkideal} = f_{intkideal}(\varphi_{ECP}, TM_{flow})
```

where:

- $\dot{m}_{intkideal}$  is engine intake port mass flow at arbitrary cam phaser angles, in g/s.
- $\varphi_{ECP}$  is exhaust cam phaser angle, in degrees crank retard.
- $TM_{flow}$  is flow rate equivalent to corrected trapped mass at the current engine speed, in g/s.



To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

# Exhaust cam phase breakpoints, f\_mdot\_air\_ecp\_bpt — Breakpoints array

Exhaust cam phaser breakpoints for air mass flow lookup table.

### Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

# Trapped mass flow breakpoints, f\_mdot\_trpd\_bpt — Breakpoints array

Trapped mass flow breakpoints for air mass flow lookup table.

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

# Air mass flow correction factor, f\_mdot\_air\_corr — Lookup table array

The intake air mass flow correction lookup table,  $f_{aircorr}$  , is a function of ideal load and engine speed

$$\dot{m}_{air} = \dot{m}_{intkideal} f_{aircorr}(L_{ideal}, N)$$

where:

 $L_{ideal}$  is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.

• *N* is engine speed, in rpm.

 $\dot{m}_{air}$  is engine intake air mass flow final correction at steady-state cam phaser angles, in g/s.

 $\dot{m}_{intkideal}$  is engine intake port mass flow at arbitrary cam phaser angles, in g/s.



To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

Engine load breakpoints for air mass flow correction, f\_mdot\_air\_corr\_ld\_bpt — Breakpoints array

Engine load breakpoints for air mass flow final correction.

### Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

```
Engine speed breakpoints for air mass flow correction,
f_mdot_air_n_bpt — Breakpoints
vector
```

Engine speed breakpoints for air mass flow final correction.

### Dependencies

To enable this parameter, for the **Air mass flow estimation model** parameter, select Dual Variable Cam Phasing.

## EGR flow time constant, tau\_egr — Constant scalar

EGR flow time constant,  $\tau_{EGR}$ , in s.

# Intake system pressure ratio table, f\_intksys\_stdflow\_pr — Table array

The pressure ratio is a function of the standard mass flow

$$\frac{P_{out,EGR}}{P_{amb}} = f_{intksys,pr}(\dot{m}_{air,std})$$

where:

 $\dot{m}_{air,std}$  is standard mass flow, in g/s.

•

•  $\frac{P_{out,EGR}}{P_{amb}}$  is pressure ratio, dimensionless.



### Standard mass flow rate breakpoints for intake pressure ratio, f\_intksys\_stdflow\_bpt — Breakpoints vector

Standard mass flow,  ${}^{\dot{m}_{air,std}}$  , in g/s.

# EGR valve standard mass flow rate, f\_egr\_stdflow — Table array

The EGR valve standard mass flow lookup table is a function of EGR valve area percent and the pressure ratio  $% \left( {{{\rm{EGR}}} \right) = 0} \right)$ 

$$\dot{m}_{EGR,std} = f_{EGR,std} \left( EGRap, \frac{P_{out,EGR}}{P_{in,EGR}} \right)$$

where:

•  $\dot{m}_{EGR,std}$  is EGR valve standard mass flow, dimensionless.

- *EGRap* is EGR valve flow area percent, in percent.
- $P_{out,EGR}$

 $P_{in,EGR}$  is the pressure ratio, dimensionless.



EGR valve standard flow pressure ratio breakpoints, f\_egr\_stdflow\_pr\_bpt — Breakpoints vector

EGR value standard flow pressure ratio,  $\frac{P_{out,EGR}}{P_{in,EGR}}$  , dimensionless.

EGR valve standard flow area percent breakpoints, f\_egr\_stdflow\_egrap\_bpt — Breakpoints
vector

EGR valve flow area percent, *EGRap*, in percent.

Torque

### Torque table, f\_tq\_nl — Lookup table

array

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load,  $T_{brake} = f_{TnL}(L, N)$ , where:

 $T_{brake}\,$  is engine brake torque after accounting for spark advance, AFR, and friction effects, in N.m.

- *L* is engine load, as a normalized cylinder air mass, dimensionless.
- 200 150 50 6000 4000 2000 N 0 0 0 0 0 1.5 1.51.5
- N is engine speed, in rpm.

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

# Torque table load breakpoints, f\_tq\_nl\_l\_bpt — Breakpoints array

Engine load breakpoints, dimensionless.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

Torque table speed breakpoints, f\_tq\_nl\_n\_bpt — Breakpoints
array

Engine speed breakpoints, in rpm.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

# Inner torque table, f\_tq\_inr — Lookup table array

The inner torque lookup table,  $f_{Tqinr}$ , is a function of engine speed and engine load,

 $Tq_{inr} = f_{Tqinr}(L, N)$ , where:

- $Tq_{inr}$  is inner torque based on gross indicated mean effective pressure, in N.m.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.



### Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

# Friction torque table, f\_tq\_fric — Lookup table array

The friction torque lookup table,  $f_{Tfric}$ , is a function of engine speed and engine load,

 $T_{fric} = f_{Tfric} (L, N)$ , where:

 $T_{fric}$  is friction torque offset to inner torque, in N.m.

• *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.

• *N* is engine speed, in rpm.



### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

### Engine temperature modifier on friction torque, f\_fric\_temp\_mod — Lookup table

vector

Engine temperature modifier on friction torque,  $f_{fric,temp}$ , dimensionless.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

# Engine temperature modifier breakpoints, f\_fric\_temp\_bpt Breakpoints

vector

Engine temperature modifier breakpoints, in K.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

# Pumping torque table, f\_tq\_pump — Lookup table array

The pumping torque lookup table,  $f_{Tpump}$ , is a function of engine speed and injected fuel mass,  $T_{pump}=f_{Tpump}(L,N)$ , where:

- $T_{pump}$  is pumping torque, in N.m.
- *L* is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.



To enable this parameter, for the Torque model parameter, select Torque Structure.

# **Optimal spark table, f\_sa\_opt — Lookup table** array

The optimal spark lookup table,  $f_{SAopt}$ , is a function of engine speed and engine load,

 $SA_{opt} = f_{SAopt}(L, N)$  , where:

- *SA*<sub>opt</sub> is optimal spark advance timing for maximum inner torque at stoichiometric airfuel ratio (AFR), in deg.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.



To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

# Inner torque load breakpoints, f\_tq\_inr\_l\_bpt — Breakpoints array

Inner torque load breakpoints, dimensionless.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

# Inner torque speed breakpoints, f\_tq\_inr\_n\_bpt — Breakpoints array

Inner torque speed breakpoints, in rpm.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

# Spark efficiency table, f\_m\_sa — Lookup table array

The spark efficiency lookup table,  $f_{Msa}$ , is a function of the spark retard from optimal

$$M_{sa} = f_{Msa}(\Delta SA)$$
$$\Delta SA = SA_{opt} - SA$$

where:

 $M_{sa}$  is the spark retard efficiency multiplier, dimensionless.

 $\Delta SA$  is the spark retard timing distance from optimal spark advance, in deg.



### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

### Spark retard from optimal, f del sa bpt - Breakpoints scalar

Spark retard from optimal inner torque timing breakpoints, in deg.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

```
Lambda efficiency, f_m_lam — Lookup table
array
```

The lambda efficiency lookup table,  $f_{M\lambda}$ , is a function of lambda,  $M_{\lambda} = f_{M\lambda}(\lambda)$ , where:

- $M_{\lambda}$  is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.
- $\lambda$  is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.



### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

```
Lambda breakpoints, f_m_lam_bpt — Breakpoints
```

array

•

Lambda effect on inner torque lambda breakpoints, dimensionless.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

### Exhaust

```
Exhaust temperature table, f_t_exh — Lookup table
array
```

The exhaust temperature lookup table,  $\,f_{Texh}\,$  , is a function of engine load and engine speed

$$T_{exh} = f_{Texh}(L, N)$$

where:

- $T_{exh}$  is engine exhaust temperature, in K.
- L is normalized cylinder air mass or engine load, dimensionless.
- *N* is engine speed, in rpm.



Load breakpoints, f\_t\_exh\_l\_bpt — Breakpoints
array

Engine load breakpoints used for exhaust temperature lookup table.

# Speed breakpoints, f\_t\_exh\_n\_bpt - Breakpoints array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

## References

- [1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems — BOSCH ME7. SAE Technical Paper 980801, 1998.
- [2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.
- [3] Leone, T. Christenson, E., Stein, R., *Comparison of Variable Camshaft Timing Strategies at Part Load*. SAE Technical Paper 960584, 1996, doi:10.4271/960584.
- [4] Liu, F. and Pfeiffer, J., Estimation Algorithms for Low Pressure Cooled EGR in Spark-Ignition Engines. SAE Int. J. Engines 8(4):2015, doi:10.4271/2015-01-1620.

## See Also

Mapped SI Engine | SI Core Engine

### **Topics**

"Engine Calibration Maps"

### Introduced in R2017a

## **SI Core Engine**

Spark-ignition engine from intake to exhaust port

Library: Propulsion / Combustion Engine Components / Core Engine



## Description

The SI Core Engine block implements a spark-ignition (SI) engine from intake to exhaust port. You can use the block in larger vehicle models, hardware-in-the-loop (HIL) engine control design, or vehicle-level fuel economy and performance simulations.

The SI Core Engine block calculates:

- Brake torque
- Fuel flow
- Port gas mass flow, including exhaust gas recirculation (EGR)
- Air-fuel ratio (AFR)
- Exhaust temperature and exhaust mass flow rate
- Engine-out (EO) exhaust emissions
  - Hydrocarbon (HC)
  - Carbon monoxide (CO)
  - Nitric oxide and nitrogen dioxide (NOx)
  - Carbon dioxide (CO<sub>2</sub>)
  - Particulate matter (PM)

## **Air Mass Flow**

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

| Air Mass Flow Model                                            | Description                                                                                                                                                                                                                                              |  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| "SI Engine Speed-Density Air<br>Mass Flow Model"               | Uses the speed-density equation to calculate the<br>engine air mass flow, relating the engine air mass<br>flow to the intake manifold pressure and engine<br>speed. Consider using this air mass flow model in<br>engines with fixed valvetrain designs. |  |
| "SI Engine Dual-Independent Cam<br>Phaser Air Mass Flow Model" | To calculate the engine air mass flow, the dual-<br>independent cam phaser model uses:                                                                                                                                                                   |  |
|                                                                | • Empirical calibration parameters developed from engine mapping measurements                                                                                                                                                                            |  |
|                                                                | • Desktop calibration parameters derived from engine computer-aided design (CAD) data                                                                                                                                                                    |  |
|                                                                | In contrast to typical embedded air mass flow<br>calculations based on direct air mass flow<br>measurement with an air mass flow (MAF) sensor<br>this air mass flow model offers:                                                                        |  |
|                                                                | <ul> <li>Elimination of MAF sensors in dual cam-phased valvetrain applications</li> </ul>                                                                                                                                                                |  |
|                                                                | Reasonable accuracy with changes in altitude                                                                                                                                                                                                             |  |
|                                                                | Semiphysical modeling approach                                                                                                                                                                                                                           |  |
|                                                                | Bounded behavior                                                                                                                                                                                                                                         |  |
|                                                                | • Suitable execution time for electronic control unit (ECU) implementation                                                                                                                                                                               |  |
|                                                                | • Systematic development of a relatively small number of calibration parameters                                                                                                                                                                          |  |

## **Brake Torque**

To calculate the brake torque, configure the SI engine to use either of these torque models.

| Brake Torque Model                    | Description                                                                                                                                                                    |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Torque Structure<br>Model" | For the structured brake torque calculation, the SI<br>engine uses tables for the inner torque, friction<br>torque, optimal spark, spark efficiency, and lambda<br>efficiency. |
| "SI Engine Simple Torque Model"       | For the simple brake torque calculation, the SI<br>engine block uses a torque lookup table map that is<br>a function of engine speed and load.                                 |

## **Fuel Flow**

To calculate the fuel flow, the SI Core Engine block uses fuel injector characteristics and fuel injector pulse-width.

$$\dot{m}_{fuel} = \frac{NS_{inj}Pw_{inj}N_{cyl}}{Cps\left(\frac{60s}{\min}\right)\left(\frac{1000mg}{g}\right)}$$

The equation uses these variables.

 $\begin{array}{ll} & \mbox{Engine fuel mass flow, g/s} \\ & \mbox{$\dot{m}_{fuel}$} \\ & \mbox{$\omega$} \\ & \mbox{Engine rotational speed, rad/s} \\ & \mbox{$c_{ps}$} \\ & \mbox{$c_{rankshaft revolutions per power stroke, rev/stroke}$ \\ & \mbox{$s_{inj}$} \\ & \mbox{$Fuel injector slope, mg/ms$} \\ & \mbox{$s_{inj}$} \\ & \mbox{$Fuel injector pulse-width, ms$} \\ & \mbox{$pw_{inj}$} \\ & \mbox{$N_{cyl}$} \\ & \mbox{$N_{cyl}$} \\ & \mbox{$N_{minisher}$} \\ & \mbox{$n_{inj}$} \\ & \mbox{$minisher}$ \\ & \mbox{$minisher}$ \\ & \mbox{$n_{inj}$} \\ & \mbox{$minisher}$ \\ & \mbox{$min$ 

## **Air-Fuel Ratio**

To calculate the air-fuel (AFR) ratio, the CI Core Engine and SI Core Engine blocks implement this equation.

$$AFR = \frac{\dot{m}_{air}}{\dot{m}_{fuel}}$$

To calculate the exhaust gas recirculation (EGR), the blocks implement this equation. The calculation expresses the EGR as a percent of the total intake port flow.

$$EGR_{pct} = 100 \frac{\dot{m}_{intk,b}}{\dot{m}_{intk}} = 100 y_{intk,b}$$

The equations use these variables.

| AFR                 | Air-fuel ratio                         |
|---------------------|----------------------------------------|
| $\dot{m}_{intk}$    | Engine air mass flow                   |
| $\dot{m}_{fuel}$    | Fuel mass flow                         |
| Yintk,b             | Intake burned mass fraction            |
| $EGR_{pct}$         | EGR percent                            |
|                     | Recirculated burned gas mass flow rate |
| m <sub>intk,b</sub> |                                        |

### **Exhaust**

The block calculates the:

- Exhaust gas temperature
- Exhaust gas-specific enthalpy
- Exhaust gas mass flow rate
- Engine-out (EO) exhaust emissions:
  - Hydrocarbon (HC)
  - Carbon monoxide (CO)
  - Nitric oxide and nitrogen dioxide (NOx)
  - Carbon dioxide (CO<sub>2</sub>)
  - Particulate matter (PM)

The exhaust temperature determines the specific enthalpy.

 $h_{exh} = C p_{exh} T_{exh}$ 

The exhaust mass flow rate is the sum of the intake port air mass flow and the fuel mass flow.

 $\dot{m}_{exh} = \dot{m}_{intake} + \dot{m}_{fuel}$ 

To calculate the exhaust emissions, the block multiplies the emission mass fraction by the exhaust mass flow rate. To determine the emission mass fractions, the block uses lookup tables that are functions of the engine torque and speed.

$$y_{exh,i} = f_{i_{frac}}(T_{brake}, N)$$
$$\dot{m}_{exh,i} = \dot{m}_{exh} y_{exh,i}$$

The fraction of air and fuel entering the intake port, injected fuel, and stoichiometric AFR determine the air mass fraction that exits the exhaust.

$$y_{exh,air} = \max\left[y_{in,air} - \frac{\dot{m}_{fuel} + y_{in,fuel}\dot{m}_{intake}}{\dot{m}_{fuel} + \dot{m}_{intake}} AFR_s\right]$$

If the engine is operating at the stoichiometric or fuel rich AFR, no air exits the exhaust. Unburned hydrocarbons and burned gas comprise the remainder of the exhaust gas. This equation determines the exhaust burned gas mass fraction.

$$y_{exh,b} = \max\left[\left(1 - y_{exh,air} - y_{exh,HC}\right), 0\right]$$

The equations use these variables.

 $\begin{array}{ll} T_{exh} & & \\ F_{exh} & & \\ h_{exh} & & \\ Cp_{exh} & & \\ \end{array} \qquad \begin{array}{l} \text{Exhaust manifold inlet-specific enthalpy} \\ & & \\ \text{Exhaust gas specific heat} \end{array}$ 

| $\dot{m}_{inth}$            | Intake port air mass flow rate                                               |
|-----------------------------|------------------------------------------------------------------------------|
| inik<br>m                   | Fuel mass flow rate                                                          |
| m <sub>fuel</sub><br>m      | Exhaust mass flow rate                                                       |
| N: c l                      | Intake fuel mass fraction                                                    |
| Yın,fuel<br>Yexh,i          | Exhaust mass fraction for $i = CO_2$ , CO, HC, NOx, air, burned gas, and PM  |
| merh i                      | Exhaust mass flow rate for $i = CO_2$ , CO, HC, NOx, air, burned gas, and PM |
| T <sub>brake</sub>          | Engine brake torque                                                          |
| N                           | Engine speed                                                                 |
| <b>y</b> <sub>exh,air</sub> | Exhaust air mass fraction                                                    |
| $y_{exh,b}$                 | Exhaust air burned mass fraction                                             |

## Ports

## Input

InjPw — Fuel injector pulse-width
scalar

Fuel injector pulse-width,  $Pw_{inj}$ , in ms.

## SpkAdv — Spark advance scalar

Spark advance, *SA*, in degrees crank angle before top dead center (degBTDC).

### Dependencies

To create this port, for the **Torque model** parameter, select **Torque Structure**.

# ICP — Intake cam phase angle command scalar

Intake cam phase angle command,  $\varphi_{ICPCMD}$ , in degCrkAdv, or degrees crank advance.

#### Dependencies

To create this port, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

### ECP — Exhaust cam phase angle command

scalar

Exhaust cam phase angle command,  $\varphi_{ECPCMD}$ , in degCrkRet, or degrees crank retard.

#### Dependencies

To create this port, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

### AmbPrs — Ambient pressure

scalar

Ambient pressure,  $P_{Amb}$ , in Pa.

### Dependencies

To create this port, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

### EngSpd — Engine speed

scalar

Engine speed, *N*, in rpm.

### Ect — Engine cooling temperature

scalar

Engine cooling temperature,  $T_{coolant}$ , in K.

### Dependencies

To enable this parameter, for Torque model, select Torque Structure.

**Intk** — **Intake port pressure, temperature, enthalpy, mass fractions** two-way connector port

Bus containing the upstream:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Intake port mass fractions, dimensionless. EGR mass flow at the intake port is burned gas.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

# **Exh** — **Exhaust port pressure, temperature, enthalpy, mass fractions** two-way connector port

Bus containing the exhaust:

- Prs Pressure, in Pa
- Temp Temperature, in K
- Enth Specific enthalpy, in J/kg
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

• 02MassFrac — Oxygen

- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

### Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal             | Description                                                                                                       | Variable                 | Units |
|--------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|-------|
| IntkGasMass<br>Flw | Engine intake air mass<br>flow.                                                                                   | <i>m</i> <sub>air</sub>  | kg/s  |
| IntkAirMass<br>Flw | Engine intake port mass<br>flow.                                                                                  | <i>m</i> <sub>intk</sub> | kg/s  |
| NrmlzdAirCh<br>rg  | Engine load (that is,<br>normalized cylinder air<br>mass) corrected for final<br>steady-state cam phase<br>angles | L                        | N/A   |
| Afr                | Air-fuel ratio at engine<br>exhaust port                                                                          | AFR                      | N/A   |
| FuelMassFlw        | Fuel flow into engine                                                                                             | m <sub>fuel</sub>        | kg/s  |
| Signal            | Description                                                         | Variable                                                                                                       | Units                    |
|-------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|
| ExhManGasTe<br>mp | Exhaust gas temperature<br>at exhaust manifold inlet                | T <sub>exh</sub>                                                                                               | К                        |
| EngTrq            | Engine brake torque                                                 | T <sub>brake</sub>                                                                                             | N.m                      |
| EngSpd            | Engine speed                                                        | N                                                                                                              | rpm                      |
| IntkCamPhas<br>e  | Intake cam phaser angle                                             | $\varphi_{ICP}$ i                                                                                              | degrees crank<br>advance |
| ExhCamPhase       | Exhaust cam phaser<br>angle                                         | $\varphi_{ECP}$                                                                                                | degrees crank<br>retard  |
| CrkAng            | Engine crankshaft<br>absolute angle                                 | $\int_{0}^{(360)Cps} EngSpd\frac{180}{30}d\theta$<br>where $Cps$ is crankshaft<br>revolutions per power stroke | degrees crank<br>angle   |
| EgrPct            | EGR percent                                                         | EGR <sub>pct</sub>                                                                                             | N/A                      |
| EoAir             | EO air mass flow rate                                               | <i>m</i> <sub>exh</sub>                                                                                        | kg/s                     |
| EoBrndGas         | EO burned gas mass flow rate                                        | Yexh,b                                                                                                         | kg/s                     |
| EoHC              | EO hydrocarbon emission mass flow rate                              | y <sub>exh,HC</sub>                                                                                            | kg/s                     |
| EoC0              | EO carbon monoxide<br>emission mass flow rate                       | y <sub>exh,CO</sub>                                                                                            | kg/s                     |
| EoN0x             | EO nitric oxide and<br>nitrogen dioxide<br>emissions mass flow rate | Yexh,NOx                                                                                                       | kg/s                     |
| EoC02             | EO carbon dioxide<br>emission mass flow rate                        | Yexh,CO2                                                                                                       | kg/s                     |
| EoPm              | EO particulate matter<br>emission mass flow rate                    | y <sub>exh,PM</sub>                                                                                            | kg/s                     |

### EngTrq — Engine brake torque

scalar

Engine brake torque,  $T_{brake}$ , in N.m.

Intk — Intake port mass flow rate, heat flow rate, temperature, mass fraction two-way connector port

Bus containing:

- MassFlwRate Intake port mass flow rate, in kg/s
- HeatFlwRate Intake port heat flow rate, in J/s
- Temp Intake port temperature, in K
- MassFrac Intake port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

### Exh — Exhaust port mass flow rate, heat flow rate, temperature, mass fraction

two-way connector port

Bus containing:

• MassFlwRate — Exhaust port mass flow rate, in kg/s

- HeatFlwRate Exhaust heat flow rate, in J/s
- Temp Exhaust temperature, in K
- MassFrac Exhaust port mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- **02MassFrac** Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- **PmMassFrac** Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

### **Parameters**

#### **Block Options**

#### Air mass flow model — Select air mass flow model

Dual-Independent Variable Cam Phasing(default) | Simple Speed-Density

To calculate engine air mass flow, configure the SI engine to use either of these air mass flow models.

| Air Mass Flow Model                              | Description                                                                                                                                                                                                                                              |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Speed-Density Air<br>Mass Flow Model" | Uses the speed-density equation to calculate the<br>engine air mass flow, relating the engine air mass<br>flow to the intake manifold pressure and engine<br>speed. Consider using this air mass flow model in<br>engines with fixed valvetrain designs. |

| Air Mass Flow Model                                            | Description                                                                                                                                                                        |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Dual-Independent Cam<br>Phaser Air Mass Flow Model" | To calculate the engine air mass flow, the dual-<br>independent cam phaser model uses:                                                                                             |
|                                                                | • Empirical calibration parameters developed from engine mapping measurements                                                                                                      |
|                                                                | <ul> <li>Desktop calibration parameters derived from<br/>engine computer-aided design (CAD) data</li> </ul>                                                                        |
|                                                                | In contrast to typical embedded air mass flow<br>calculations based on direct air mass flow<br>measurement with an air mass flow (MAF) sensor,<br>this air mass flow model offers: |
|                                                                | • Elimination of MAF sensors in dual cam-phased valvetrain applications                                                                                                            |
|                                                                | • Reasonable accuracy with changes in altitude                                                                                                                                     |
|                                                                | Semiphysical modeling approach                                                                                                                                                     |
|                                                                | Bounded behavior                                                                                                                                                                   |
|                                                                | • Suitable execution time for electronic control unit (ECU) implementation                                                                                                         |
|                                                                | <ul> <li>Systematic development of a relatively small<br/>number of calibration parameters</li> </ul>                                                                              |

The table summarizes the parameter dependencies.

| Air Mass Flow<br>Model | Enables Parameters                                                              |
|------------------------|---------------------------------------------------------------------------------|
| Dual-                  | Cylinder volume at intake valve close table, f_vivc                             |
| Variable Cam           | Cylinder volume intake cam phase breakpoints, f_vivc_icp_bpt                    |
| Phasing                | Cylinder trapped mass correction factor, f_tm_corr                              |
|                        | Normalized density breakpoints, f_tm_corr_nd_bpt                                |
|                        | Engine speed breakpoints, f_tm_corr_n_bpt                                       |
|                        | Air mass flow, f_mdot_air                                                       |
|                        | Exhaust cam phase breakpoints, f_mdot_air_ecp_bpt                               |
|                        | Trapped mass flow breakpoints, f_mdot_trpd_bpt                                  |
|                        | Air mass flow correction factor, f_mdot_air_corr                                |
|                        | Engine load breakpoints for air mass flow correction,<br>f_mdot_air_corr_ld_bpt |
|                        | Engine speed breakpoints for air mass flow correction, f_mdot_air_n_bpt         |
| Simple Speed           | Speed-density volumetric efficiency, f_nv                                       |
| Density                | Speed-density intake manifold pressure breakpoints,<br>f_nv_prs_bpt             |
|                        | Speed-density engine speed breakpoints, f_nv_n_bpt                              |

### Torque model — Select torque model

Torque Structure (default) | Simple Torque Lookup

To calculate the brake torque, configure the SI engine to use either of these torque models.

| Brake Torque Model                    | Description                                                                                                                                                                    |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "SI Engine Torque Structure<br>Model" | For the structured brake torque calculation, the SI<br>engine uses tables for the inner torque, friction<br>torque, optimal spark, spark efficiency, and lambda<br>efficiency. |
| "SI Engine Simple Torque Model"       | For the simple brake torque calculation, the SI<br>engine block uses a torque lookup table map that is<br>a function of engine speed and load.                                 |

The table summarizes the parameter dependencies.

| Torque Model     | Enables Parameters                                                 |
|------------------|--------------------------------------------------------------------|
| Torque Structure | Inner torque table, f_tq_inr                                       |
|                  | Friction torque table, f_tq_fric                                   |
|                  | Engine temperature modifier on friction torque,<br>f_fric_temp_mod |
|                  | Engine temperature modifier breakpoints,<br>f_fric_temp_bpt        |
|                  | Pumping torque table, f_tq_pump                                    |
|                  | Optimal spark table, f_sa_opt                                      |
|                  | Inner torque load breakpoints, f_tq_inr_l_bpt                      |
|                  | Inner torque speed breakpoints, f_tq_inr_n_bpt                     |
|                  | Spark efficiency table, f_m_sa                                     |
|                  | Spark retard from optimal, f_del_sa_bpt                            |
|                  | Lambda efficiency, f_m_lam                                         |
|                  | Lambda breakpoints, f_m_lam_bpt                                    |

| Torque Model            | Enables Parameters                                                    |
|-------------------------|-----------------------------------------------------------------------|
| Simple Torque<br>Lookup | Torque table, f_tq_nl<br>Torque table load breakpoints, f_tq_nl_l_bpt |
|                         | Torque table speed breakpoints, f_tq_nl_n_bpt                         |

#### Air

```
Number of cylinders, NCyl — Engine cylinders scalar
```

Number of engine cylinders,  $N_{cyl}$ .

**Crank revolutions per power stroke, Cps — Revolutions per stroke** scalar

Crankshaft revolutions per power stroke, *Cps* , in rev/stroke.

### **Total displaced volume**, Vd — **Volume**

scalar

Displaced volume,  $V_d$ , in m^3.

### Ideal gas constant air, Rair — Constant scalar

Ideal gas constant,  $R_{air}$ , in J/(kg\*K).

### Air standard pressure, Pstd — Pressure scalar

Standard air pressure,  $P_{std}$ , in Pa.

### Air standard temperature, Tstd — Temperature scalar

Standard air temperature,  $T_{std}$ , in K.

# Speed-density volumetric efficiency, f\_nv — Lookup table array

The engine volumetric efficiency lookup table,  $f_{\eta_v}$ , is a function of intake manifold absolute pressure and engine speed

$$\eta_v = f_{\eta_u}(MAP, N)$$

where:

- $\eta_v$  is engine volumetric efficiency, dimensionless.
- *MAP* is intake manifold absolute pressure, in KPa.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select **Simple Speed-Density**.

# Speed-density intake manifold pressure breakpoints, f\_nv\_prs\_bpt — Breakpoints

array

Intake manifold pressure breakpoints for speed-density volumetric efficiency lookup table, in KPa.

#### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select **Simple Speed-Density**.

## Speed-density engine speed breakpoints, f\_nv\_n\_bpt — Breakpoints array

Engine speed breakpoints for speed-density volumetric efficiency lookup table, in rpm.

#### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select **Simple Speed-Density**.

## **Cylinder volume at intake valve close table, f\_vivc — 2-D lookup table** array

The cylinder volume at intake value close table (IVC),  $f_{Vivc}$  is a function of the intake cam phaser angle

$$V_{IVC} = f_{Vivc}(\varphi_{ICP})$$

where:

 $V_{IVC}$  is cylinder volume at IVC, in L.

 $\varphi_{ICP}$  is intake cam phaser angle, in crank advance degrees.



To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

# Cylinder volume intake cam phase breakpoints, f\_vivc\_icp\_bpt — Breakpoints

array

Cylinder volume intake cam phase breakpoints, in L.

#### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

## **Cylinder trapped mass correction factor, f\_tm\_corr — Lookup table** array

The trapped mass correction factor table,  $f_{TMcorr}$ , is a function of the normalized density and engine speed

 $TM_{corr} = f_{TMcorr}(\rho_{norm}, N)$ 

### where:

- $TM_{corr}$ , is trapped mass correction multiplier, dimensionless.
  - $\rho_{norm}$  is normalized density, dimensionless.
- *N* is engine speed, in rpm.



### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

## Normalized density breakpoints, f\_tm\_corr\_nd\_bpt — Breakpoints array

Normalized density breakpoints, dimensionless.

### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

## Engine speed breakpoints, f\_tm\_corr\_n\_bpt — Breakpoints array

Engine speed breakpoints, in rpm.

To enable this parameter, for the Air mass flow model parameter, select Dual -Independent Variable Cam Phasing.

### Air mass flow, f\_mdot\_air — Lookup table

array

The phaser intake mass flow model lookup table is a function of exhaust cam phaser angles and trapped air mass flow

$$\dot{m}_{intkideal} = f_{intkideal}(\varphi_{ECP}, TM_{flow})$$

where:

 $\dot{m}_{intkideal}$  is engine intake port mass flow at arbitrary cam phaser angles, in g/s.

 $\varphi_{ECP}$  is exhaust cam phaser angle, in degrees crank retard.

*TM*<sub>flow</sub> is flow rate equivalent to corrected trapped mass at the current engine speed, in g/s.



### Dependencies

To enable this parameter, for the Air mass flow model parameter, select Dual-Independent Variable Cam Phasing.

## Exhaust cam phase breakpoints, f\_mdot\_air\_ecp\_bpt — Breakpoints array

Exhaust cam phaser breakpoints for air mass flow lookup table, in degrees crank retard.

### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

## Trapped mass flow breakpoints, f\_mdot\_trpd\_bpt — Breakpoints array

Trapped mass flow breakpoints for air mass flow lookup table, in g/s.

### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

## Air mass flow correction factor, f\_mdot\_air\_corr — Lookup table array

The intake air mass flow correction lookup table,  $f_{aircorr}$ , is a function of ideal load and engine speed

$$\dot{m}_{air} = \dot{m}_{intkideal} f_{aircorr}(L_{ideal}, N)$$

where:

•

- $L_{ideal}$  is engine load (normalized cylinder air mass) at arbitrary cam phaser angles, uncorrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.
- •

 $\dot{m}_{air}$  is engine intake air mass flow final correction at steady-state cam phaser angles, in g/s.

 $\dot{m}_{intkideal}$  is engine intake port mass flow at arbitrary cam phaser angles, in g/s.



To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

#### Engine load breakpoints for air mass flow correction, f\_mdot\_air\_corr\_ld\_bpt — Breakpoints array

Engine load breakpoints for air mass flow final correction, dimensionless.

#### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

### Engine speed breakpoints for air mass flow correction, f\_mdot\_air\_n\_bpt — Breakpoints

array

Engine speed breakpoints for air mass flow final correction, in rpm.

#### Dependencies

To enable this parameter, for the **Air mass flow model** parameter, select Dual-Independent Variable Cam Phasing.

#### Torque

### Torque table, f\_tq\_nl — Lookup table array

For the simple torque lookup table model, the SI engine uses a lookup table map that is a function of engine speed and load,  $T_{brake} = f_{TnL}(L, N)$ , where:

- $T_{brake}$  is engine brake torque after accounting for spark advance, AFR, and friction effects, in N.m.
- *L* is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

## Torque table load breakpoints, f\_tq\_nl\_l\_bpt — Breakpoints array

Engine load breakpoints, dimensionless.

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

Torque table speed breakpoints, f\_tq\_nl\_n\_bpt — Breakpoints
array

Engine speed breakpoints, in rpm.

#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Simple Torque** Lookup.

### Inner torque table, f\_tq\_inr — Lookup table array

The inner torque lookup table,  $f_{Tainr}$ , is a function of engine speed and engine load,

 $Tq_{inr} = f_{Tqinr}(L, N)$  , where:

 $Tq_{inr}$  is inner torque based on gross indicated mean effective pressure, in N.m.

- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.



To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

```
Friction torque table, f_tq_fric — Lookup table
```

array

The friction torque lookup table,  $f_{Tfric}$ , is a function of engine speed and engine load,

 $T_{fric} = f_{Tfric} \left( L, N \right)$ , where:

 $T_{fric}$  is friction torque offset to inner torque, in N.m.

- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.



### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

### Engine temperature modifier on friction torque, f\_fric\_temp\_mod — Lookup table

vector

Engine temperature modifier on friction torque,  $f_{fric,temp}$ , dimensionless.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

# Engine temperature modifier breakpoints, f\_fric\_temp\_bpt — Breakpoints

vector

Engine temperature modifier breakpoints, in K.

### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

## Pumping torque table, f\_tq\_pump — Lookup table array

The pumping torque lookup table,  $f_{Tpump}$ , is a function of engine speed and injected fuel mass,  $T_{pump}=f_{Tpump}(L,N)$ , where:

- $T_{pump}$  is pumping torque, in N.m.
- L is engine load, as a normalized cylinder air mass, dimensionless.
- *N* is engine speed, in rpm.



#### Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

### Optimal spark table, f\_sa\_opt — Lookup table array

The optimal spark lookup table,  $f_{SAopt}$ , is a function of engine speed and engine load,

 $SA_{opt} = f_{SAopt}(L, N)$  , where:

- *SA*<sub>opt</sub> is optimal spark advance timing for maximum inner torque at stoichiometric airfuel ratio (AFR), in deg.
- *L* is engine load at arbitrary cam phaser angles, corrected for final steady-state cam phaser angles, dimensionless.
- *N* is engine speed, in rpm.



To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

## Inner torque load breakpoints, f\_tq\_inr\_l\_bpt — Breakpoints array

Inner torque load breakpoints, dimensionless.

#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

## Inner torque speed breakpoints, f\_tq\_inr\_n\_bpt — Breakpoints array

Inner torque speed breakpoints, in rpm.

To enable this parameter, for the Torque model parameter, select Torque Structure.

```
Spark efficiency table, f_m_sa — Lookup table
array
```

The spark efficiency lookup table,  $f_{Msa}$ , is a function of the spark retard from optimal

$$\begin{split} M_{sa} &= f_{Msa}(\varDelta SA) \\ \varDelta SA &= SA_{opt} - SA \end{split}$$

where:

 $M_{sa}$  is the spark retard efficiency multiplier, dimensionless.

 $\Delta SA$  is the spark retard timing distance from optimal spark advance, in deg.



#### Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

## Spark retard from optimal, f\_del\_sa\_bpt - Breakpoints scalar

Spark retard from optimal inner torque timing breakpoints, in deg.

### Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

```
Lambda efficiency, f_m_lam — Lookup table
array
```

The lambda efficiency lookup table,  $f_{M\lambda}$ , is a function of lambda,  $M_{\lambda} = f_{M\lambda}(\lambda)$ , where:

 $M_\lambda$  is the lambda multiplier on inner torque to account for the air-fuel ratio (AFR) effect, dimensionless.

 $\lambda$  is lambda, AFR normalized to stoichiometric fuel AFR, dimensionless.



#### Dependencies

To enable this parameter, for the **Torque model** parameter, select **Torque Structure**.

```
Lambda breakpoints, f_m_lam_bpt — Breakpoints
array
```

Lambda effect on inner torque lambda breakpoints, dimensionless.

### Dependencies

To enable this parameter, for the Torque model parameter, select Torque Structure.

### Exhaust

### Exhaust temperature table, f\_t\_exh — Lookup table array

The exhaust temperature lookup table,  $f_{\mathit{Texh}}$  , is a function of engine load and engine speed

$$T_{exh} = f_{Texh}(L, N)$$

where:

- $T_{exh}$  is engine exhaust temperature, in K.
- L is normalized cylinder air mass or engine load, dimensionless.
- *N* is engine speed, in rpm.



Load breakpoints, f\_t\_exh\_l\_bpt — Breakpoints
array

Engine load breakpoints used for exhaust temperature lookup table, dimensionless.

### Speed breakpoints, f\_t\_exh\_n\_bpt — Breakpoints

array

Engine speed breakpoints used for exhaust temperature lookup table, in rpm.

### **Exhaust gas specific heat at constant pressure, cp\_exh — Specific heat** scalar

Exhaust gas-specific heat,  $Cp_{exh}$ , in J/(kg\*K).

# CO2 mass fraction table, $f\_CO2\_frac$ — Carbon dioxide (CO\_2) emission lookup table

array

The SI Core Engine  $CO_2$  emission mass fraction lookup table is a function of engine torque and engine speed, *CO2 Mass Fraction* = f(Speed, Torque), where:

- *CO2 Mass Fraction* is the CO<sub>2</sub> emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N.m.



To enable this parameter, on the **Exhaust** tab, select **CO2**.

# CO mass fraction table, f\_CO\_frac — Carbon monoxide (CO) emission lookup table

array

The SI Core Engine CO emission mass fraction lookup table is a function of engine torque and engine speed, *CO Mass Fraction* = f(Speed, Torque), where:

- CO Mass Fraction is the CO emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N.m.



#### Dependencies

To enable this parameter, on the **Exhaust** tab, select **CO**.

# HC mass fraction table, f\_HC\_frac — Hydrocarbon (HC) emission lookup table

array

The SI Core Engine HC emission mass fraction lookup table is a function of engine torque and engine speed, HC Mass Fraction = f(Speed, Torque), where:

- HC Mass Fraction is the HC emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- Torque is engine torque, in N.m.



#### Dependencies

To enable this parameter, on the **Exhaust** tab, select **HC**.

# NOx mass fraction table, $f\_NOx\_frac$ — Nitric oxide and nitrogen dioxide (NOx) emission lookup table

array

The SI Core Engine NOx emission mass fraction lookup table is a function of engine torque and engine speed, NOx Mass Fraction = f(Speed, Torque), where:

- NOx Mass Fraction is the NOx emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N.m.



To enable this parameter, on the **Exhaust** tab, select **NOx**.

# PM mass fraction table, f\_PM\_frac — Particulate matter (PM) emission lookup table

array

The SI Core Engine PM emission mass fraction lookup table is a function of engine torque and engine speed where:

- *PM* is the PM emission mass fraction, dimensionless.
- *Speed* is engine speed, in rpm.
- *Torque* is engine torque, in N.m.

#### Dependencies

To enable this parameter, on the **Exhaust** tab, select **PM**.

### Engine speed breakpoints, f\_exhfrac\_n\_bpt — Breakpoints vector

Engine speed breakpoints used for the emission mass fractions lookup tables, in rpm.

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.

### Engine torque breakpoints, f\_exhfrac\_trq\_bpt — Breakpoints vector

Engine torque breakpoints used for the emission mass fractions lookup tables, in N.m.

### Dependencies

To enable this parameter, on the Exhaust tab, select CO2, CO, NOx, HC, or PM.

Fuel

### Injector slope, Sinj — Slope scalar

Fuel injector slope, S<sub>ini</sub>, mg/ms.

## Stoichiometric air-fuel ratio, afr\_stoich — Air-fuel ratio scalar

Air-fuel ratio, AFR.

### References

- [1] Gerhardt, J., Hönninger, H., and Bischof, H., A New Approach to Functional and Software Structure for Engine Management Systems — BOSCH ME7. SAE Technical Paper 980801, 1998.
- [2] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

### See Also

Mapped SI Engine | SI Controller

### Topics

"SI Core Engine Air Mass Flow and Torque Production"

"Engine Calibration Maps"

### Introduced in R2017a

### Turbine

Turbine for boosted enginesLibrary:Propulsion / Combustion Engine Components / Boost



### Description

The Turbine block uses the conservation of mass and energy to calculate mass and heat flow rates for turbines with either fixed or variable geometry. You can configure the block with a wastegate valve to bypass the turbine. The block uses two-way ports to connect to the inlet and outlet control volumes and the drive shaft. You can specify the lookup tables to calculate the mass flow rate and turbine efficiency. Typically, turbine manufacturers provide the mass flow rate and efficiency tables as a function of corrected speed and pressure ratio. The block does not support reverse mass flow.

The mass flows from the inlet control volume to outlet control volume.



The Turbine block implements equations to model the performance, wastegate flow, and combined flow.

### Thermodynamics

The block uses these equations to model the thermodynamics.

| Calculation                                                                          | Equations                                                                                                               |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Forward mass flow                                                                    | $\dot{m}_{turb} > 0$                                                                                                    |
|                                                                                      | $p_{01} = p_{inlet}$                                                                                                    |
|                                                                                      | $p_{02} = p_{outlet}$                                                                                                   |
|                                                                                      | $T_{01} = T_{inlet}$                                                                                                    |
|                                                                                      | $h_{01} = h_{inlet}$                                                                                                    |
| First law of thermodynamics                                                          | $\dot{W}_{turb} = \dot{m}_{turb}c_p (T_{01} - T_{02})$                                                                  |
| Isentropic efficiency                                                                |                                                                                                                         |
|                                                                                      | $\eta_{turb} = \frac{h_{01} - h_{02}}{h} = \frac{T_{01} - T_{02}}{T}$                                                   |
| Isentropic outlet temperature,<br>assuming ideal gas, and<br>constant specific heats | $T_{02_{0}} = T_{01} \left(\frac{p_{02}}{\gamma}\right)^{\frac{\gamma-1}{\gamma}}$                                      |
| Specific heat ratio                                                                  | $\left( \begin{array}{c} p_{01} \end{array} \right)$                                                                    |
|                                                                                      | $\gamma = \frac{c_p}{c_p - P}$                                                                                          |
| Outlet temperature                                                                   | c <sub>p</sub> n                                                                                                        |
|                                                                                      | $T_{02} = T_{01} + \eta_{turb} T_{01} \left\{ 1 - \left( \frac{p_{02}}{r} \right)^{\frac{\gamma - 1}{\gamma}} \right\}$ |
| Heat flows                                                                           | $q_{in,turb} = \dot{m}_{turb}c_p T_{01}$                                                                                |
|                                                                                      | $q_{out,turb} = \dot{m}_{turb} c_p T_{02}$                                                                              |
| Drive shaft torque                                                                   |                                                                                                                         |
|                                                                                      | $\tau_{turb} = \frac{W_{turb}}{\omega}$                                                                                 |

The equations use these variables.

| $p_{\text{inlot}}$ , $p_{01}$       | Inlet control volume total pressure           |
|-------------------------------------|-----------------------------------------------|
| $T_{inlet}$ , $T_{01}$              | Inlet control volume total temperature        |
| $h_{inlet}$ , $h_{01}$              | Inlet control volume total specific enthalpy  |
| $p_{outlet}$ , $p_{02}$             | Outlet control volume total pressure          |
| T <sub>outlet</sub> T <sub>02</sub> | Outlet control volume total temperature       |
| h <sub>outlet</sub>                 | Outlet control volume total specific enthalpy |
| Ŵ.,                                 | Drive shaft power                             |
| T <sub>oo</sub>                     | Temperature exiting the turbine               |
| $h_{02}$                            | Outlet total specific enthalpy                |
| <i>т</i> .                          | Turbine mass flow rate                        |
| ~ turb                              | Turbine inlet heat flow rate                  |
| Yin,turb                            | Turbine outlet heat flow rate                 |
| <i>q<sub>out,turb</sub></i>         | Turbine isentropic efficiency                 |
| $\eta_{turb}$                       | Isentropic outlet total temperature           |
| T <sub>02s</sub>                    | Isentropic outlet total specific enthalpy     |
| h <sub>02s</sub>                    | Ideal gas constant                            |
| ĸ                                   | Specific heat at constant pressure            |
| $c_p$                               | Specific heat ratio                           |
| Y                                   | Drive shaft torque                            |
| $\tau_{turb}$                       | -                                             |

 $\dot{W_{turb}}$  Drive shaft power

### Performance Lookup Tables

The block implements lookup tables based on these equations.

| Calculation                         | Equation                                                                  |                                                          |
|-------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|
| Corrected mass<br>flow rate         | $\dot{m}_{corr} = \dot{m}_{turb} \frac{\sqrt{T_{01} / T_{ref}}}{r_{ref}}$ |                                                          |
| Corrected speed                     | P01 / Pref                                                                |                                                          |
|                                     | $\omega_{corr} = \frac{\omega}{ T_{res} / T_{res} }$                      |                                                          |
| Pressure                            | $\sqrt{101}$ / $ref$                                                      |                                                          |
| expansion ratio                     | $p_r = \frac{p_{01}}{p_r}$                                                |                                                          |
| Efficiency lookup                   | Fixed geometry (2-D table)                                                |                                                          |
| table                               |                                                                           | $\eta_{turbfx,tbl} = f(\omega_{corr}, p_r)$              |
|                                     | Variable geometry (3-D table)                                             |                                                          |
|                                     |                                                                           | $\eta_{turbvr,tbl} = f(\omega_{corr}, p_r, L_{rack})$    |
| Corrected mass<br>flow lookup table | Fixed geometry (2-D table)                                                | $\dot{m}_{corrfx,tbl} = f(\omega_{corr}, p_r)$           |
|                                     | Variable geometry (3-D table)                                             |                                                          |
|                                     |                                                                           | $\dot{m}_{corrvr,tbl} = f(\omega_{corr}, p_r, L_{rack})$ |

The equations use these variables.

| $p_{01}$  | Inlet control volume total pressure  |
|-----------|--------------------------------------|
| <i>n</i>  | Pressure expansion ratio             |
| $P_r$     | Outlet control volume total pressure |
| $p_{02}$  | Lookup table reference pressure      |
| $P_{ref}$ | 1                                    |

| Inlet control volume total temperature                          |
|-----------------------------------------------------------------|
| Lookup table reference temperature                              |
| Turbine mass flow rate                                          |
| Drive shaft speed                                               |
| Corrected drive shaft speed                                     |
| Variable geometry turbine rack position                         |
| Efficiency 2-D lookup table for fixed geometry                  |
| Corrected mass flow rate 2-D lookup table for fixed geometry    |
| Efficiency 3-D lookup table for variable geometry               |
| Corrected mass flow rate 3-D lookup table for variable geometry |
|                                                                 |

### Wastegate

To calculate the wastegate heat and mass flow rates, the Turbine block uses a Flow Restriction block. The Flow Restriction block uses the wastegate flow area.

$$A_{wg} = A_{wgpctcmd} \frac{A_{wgopen}}{100}$$

The equation uses these variables.

Wastegate valve area percent command

Awgpctcmd

Wastegate valve area

 $A_{wg}$ 

Wastegate valve area when fully open

Awgopen

### **Combined Flow**

To represent flow through the wastegate valve and turbine, the block uses these equations.

| Calculation                                                        | Equations                                                                                                                        |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Blocks not configured with a wastegate valve                       | $\dot{m}_{wg} = q_{wg} = 0$                                                                                                      |
| Total mass flow rate                                               | $\dot{m}_{total} = \dot{m}_{turb} + \dot{m}_{wg}$                                                                                |
| Total heat flow rate                                               | $q_{inlet} = q_{in,turb} + q_{wg}$                                                                                               |
| Combined temperature<br>exiting the wastegate<br>valve and turbine | $q_{outlet} = q_{out,turb} + q_{wg}$                                                                                             |
|                                                                    | $T_{outflw} = \begin{cases} \frac{q_{outlet}}{\dot{m}_{total}c_p} & \dot{m}_{total} > \dot{m}_{thresh} \\ T & T & T \end{cases}$ |
| The equations use these                                            | variables. $\frac{102 + 1_{outflw,wg}}{2}$ else                                                                                  |

The equations use these variables.

| Total mass flow rate | e through the | wastegate valve | and turbine |
|----------------------|---------------|-----------------|-------------|
|----------------------|---------------|-----------------|-------------|

| $\dot{m}_{total}$        | Total mass now rate through the wastegate value |
|--------------------------|-------------------------------------------------|
| <i>m</i> <sub>turb</sub> | Turbine mass flow rate                          |
| m                        | Mass flow rate through the wastegate valve      |
| a. , ,                   | Total inlet heat flow rate                      |
| Annet                    | Total outlet heat flow rate                     |
| Youtlet                  | Turbine inlet heat flow rate                    |
| <i>q</i> in,turb         | Turbine outlet heat flow rate                   |
| $q_{out,turb}$           |                                                 |

| Q <sub>ung</sub>    | Wastegate valve heat flow rate                       |
|---------------------|------------------------------------------------------|
|                     | Temperature exiting the turbine                      |
| -02<br>T            | Total temperature exiting the block                  |
| I <sub>outflw</sub> | Temperature exiting the wastegate valve              |
| ioutflw,wg          | Mass flow rate threshold to prevent dividing by zero |
| C <sub>n</sub>      | Specific heat at constant pressure                   |

### Ports

### Input

٠

### Ds — Drive shaft speed

two-way connector port

ShaftSpd — Signal containing the drive shaft angular speed,  $\omega$ , in rad/s.

### A — Inlet pressure, temperature, enthalpy, mass fractions

two-way connector port

Bus containing the inlet control volume:

- InPrs Pressure,  $p_{\text{inlet}}$  , in Pa
- InTemp Temperature, *T<sub>inlet</sub>*, in K
- InEnth Specific enthalpy,  $h_{inlet}$  , in J/kg

**B** — **Outlet pressure, temperature, enthalpy, mass fractions** two-way connector port

Bus containing the outlet control volume:
$OutPrs - Pressure, p_{outlet}$ , in Pa

- OutTemp Temperature, T<sub>outlet</sub>, in K
- **OutEnth** Specific enthalpy,  $h_{outlet}$ , in J/kg

### RackPos — Rack position

scalar

Variable geometry turbine rack position,  $L_{rack}$ .

#### Dependencies

To create this port, select Variable geometry for the Turbine type parameter.

### WgAreaPct — Wastegate area percent

scalar

Wastegate valve area percent,  $A_{wgpctcmd}$ .

#### Dependencies

To create this port, select **Include wastegate**.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal         | Description                     | Variable                 | Units |
|----------------|---------------------------------|--------------------------|-------|
| TurbOutletTemp | Temperature exiting the turbine | <i>T</i> <sub>02</sub>   | K     |
| DriveshftPwr   | Drive shaft power               | <i>W</i> <sub>turb</sub> | W     |
| DriveshftTrq   | Drive shaft torque              | $	au_{turb}$             | N.m   |

| Signal           | Description                                | Variable                 | Units |
|------------------|--------------------------------------------|--------------------------|-------|
| TurbMassFlw      | Turbine mass flow rate                     | m <sub>turb</sub>        | kg/s  |
| PrsRatio         | Pressure ratio                             | p <sub>r</sub>           | N/A   |
| DriveshftCorrSpd | Corrected drive shaft speed                | ω <sub>corr</sub>        | rad/s |
| TurbEff          | Turbine isentropic efficiency              | $\eta_{turb}$            | N/A   |
| CorrMassFlw      | Corrected mass flow rate                   | <i>m</i> <sub>corr</sub> | kg/s  |
| WgArea           | Wastegate valve area                       | A <sub>wg</sub>          | m^2   |
| WgMassFlw        | Mass flow rate through the wastegate valve | $\dot{m}_{wg}$           | kg/s  |
| WgOutletTemp     | Temperature exiting the wastegate valve    | T <sub>outflw,wg</sub>   | К     |

#### Ds — Drive shaft torque

two-way connector port

 ${\rm Tr}{\rm q}-{\rm Signal}$  containing the drive shaft torque,  $\tau_{turb}$  , in N.m.

#### A — Inlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- <code>MassFlwRate</code> Total mass flow rate through was tegate value and turbine, -  $\dot{m}_{total}$  , in kg/s
- HeatFlwRate Total inlet heat flow rate, q<sub>inlet</sub>, in J/s
- Temp Total inlet temperature,  $T_{inlet}$ , in K
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide
- NOMassFrac Nitric oxide
- N02MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

### **B** — Outlet mass flow rate, heat flow rate, temperature, mass fractions

two-way connector port

Bus containing:

- ${\tt MassFlwRate}$  Turbine mass flow rate through wastegate value and turbine,  $\dot{m}_{turb}$  , in kg/s
- HeatFlwRate Total outlet heat flow rate,  $q_{outlet}$ , in J/s
  - Temp Total outlet temperature,  $T_{outflw}$ , in K
- MassFrac Mass fractions, dimensionless.

Specifically, a bus with these mass fractions:

- 02MassFrac Oxygen
- N2MassFrac Nitrogen
- UnbrndFuelMassFrac Unburned fuel
- CO2MassFrac Carbon dioxide
- H20MassFrac Water
- COMassFrac Carbon monoxide

- NOMassFrac Nitric oxide
- NO2MassFrac Nitrogen dioxide
- NOxMassFrac Nitric oxide and nitrogen dioxide
- PmMassFrac Particulate matter
- AirMassFrac Air
- BrndGasMassFrac Burned gas

## **Parameters**

#### **Block Options**

#### **Turbine type — Select turbine type**

Fixed geometry (default) | Variable geometry

Turbine type.

#### Dependencies

The table summarizes the parameter and port dependencies.

| Value          | Enables Parameters                                 | Creates Ports |
|----------------|----------------------------------------------------|---------------|
| Fixed geometry | Corrected mass flow rate table,<br>mdot_corrfx_tbl | None          |
|                | Efficiency table, eta_turbfx_tbl                   |               |
|                | Corrected speed breakpoints,<br>w_corrfx_bpts1     |               |
|                | Pressure ratio breakpoints,<br>Pr_fx_bpts2         |               |

| Value             | Enables Parameters                                 | Creates Ports |
|-------------------|----------------------------------------------------|---------------|
| Variable geometry | Corrected mass flow rate table,<br>mdot_corrvr_tbl | RP            |
|                   | Efficiency table, eta_turbvr_tbl                   |               |
|                   | Corrected speed breakpoints,<br>w_corrvr_bpts2     |               |
|                   | Pressure ratio breakpoints,<br>Pr_vr_bpts2         |               |
|                   | Rack breakpoints, L_rack_bpts3                     |               |

#### Include wastegate — Select

on (default) | off | off

#### Dependencies

Selecting the Include wastegate parameter enables:

- Wastegate flow area, A\_wgopen
- Pressure ratio linearize limit, Plim\_wg

**Performance Tables** 

**Corrected mass flow rate table, mdot\_corrfx\_tbl — 2-D lookup table** array

Corrected mass flow rate 2-D lookup table for fixed geometry,  $\dot{m}_{corrfx,tbl}$ , in kg/s.

#### Dependencies

To enable this parameter, select Fixed geometry for the **Turbine type** parameter.

## Efficiency table, eta\_turbfx\_tb — 2-D lookup table

array

Efficiency 2-D lookup table for fixed geometry,  $\eta_{turbfx,tbl}$ .

#### Dependencies

To enable this parameter, select Fixed geometry for the Turbine type parameter.

Corrected speed breakpoints, w\_corrfx\_bpts1 — Fixed geometry
array

Corrected drive shaft speed breakpoints for fixed geometry,  $\omega_{corrfx, bpts1}$ , in rad/s.

#### Dependencies

To enable this parameter, select Fixed geometry for the Turbine type parameter.

Pressure ratio breakpoints, Pr\_fx\_bpts2 — Fixed geometry
array

Pressure ratio breakpoints for fixed geometry,  $p_{rfx.bpts2}$ .

#### Dependencies

To enable this parameter, select Fixed geometry for the Turbine type parameter.

**Corrected mass flow rate table, mdot\_corrvr\_tbl — 3-D lookup table** array

Corrected mass flow rate 3-D lookup table for variable geometry,  $\dot{m}_{corrvr,tbl}$ , in kg/s.

#### Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

Efficiency table, eta\_turbvr\_tbl — 3-D lookup table
array

Efficiency 3-D lookup table for variable geometry,  $\eta_{turbvr,tbl}$ .

#### Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

Corrected speed breakpoints, w\_corrvr\_bpts2 — Variable geometry
array

Corrected drive shaft speed breakpoints for variable geometry,  $\omega_{corrvr,bpts1}$ , in rad/s.

#### Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

```
Pressure ratio breakpoints, Pr_vr_bpts2 — Variable geometry
array
```

Pressure ratio breakpoints for variable geometry.

#### Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

## Rack breakpoints, L\_rack\_bpts3 — Variable geometry

array

Rack position breakpoints for variable geometry,  $L_{rack,bpts3}$ .

#### Dependencies

To enable this parameter, select Variable geometry for the Turbine type parameter.

## Reference temperature, T\_ref — Temperature

scalar

Performance map reference temperature,  $T_{ref}$ , in K.

```
Reference pressure, P_ref — Pressure scalar
```

Performance map reference pressure,  $P_{ref}$ , in Pa.

#### Wastegate

Wastegate flow area, A\_wgopen — Area scalar

Area of fully opened wastegate valve,  $A_{wgopen}$ , in m<sup>2</sup>.

#### Dependencies

To enable Wastegate flow area, A\_wgopen, select the Include wastegate parameter.

```
Pressure ratio linearize limit, Plim_wg — Area, m^2
scalar
```

#### Dependencies

Flow restriction linearization limit,  $p_{lim.wg}$ .

To enable **Pressure ratio linearize limit, Plim\_wg**, select the **Include wastegate** parameter.

#### Properties

Ideal gas constant, R — Constant
array

Ideal gas constant R, in J/(kg\*K).

```
Specific heat at constant pressure, cp — Specific heat
scalar
```

Specific heat at constant pressure,  $c_p$ , in J/(kg\*K).

### References

[1] Heywood, John B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988.

## See Also

Two-Way Connection | Boost Drive Shaft | Compressor

#### Introduced in R2017a

# **Mapped Core Engine**

Steady-state core engine model using lookup tables

Library: Propulsion / Combustion Engine Components / Core Engine



# Description

The Mapped Core Engine block implements a steady-state core engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design.
- Vehicle-level fuel economy and performance simulations.

The block enables you to specify lookup tables for these engine characteristics. The lookup tables are functions of engine load, L, and engine speed N.

- Power
- Air
- Fuel
- Temperature
- Efficiency
- Emissions
  - Hydrocarbon (HC)
  - Carbon monoxide (CO)
  - Nitric oxide and nitrogen dioxide (NOx)
  - Carbon dioxide (CO<sub>2</sub>)
  - Particulate matter (PM) emissions

To bound the Mapped Core Engine block output, the block does not extrapolate the lookup table data.

# Ports

Input

<TrqCmd> — Engine load TrqCmd (default)

Engine load, *L*. Examples of engine load include:

- Commanded torque
- Commanded indicated mean effective pressure (IMEP) in the engine cylinder
- Normalized cylinder air mass
- Injected fuel mass

#### Dependencies

To specify an engine load port name, on the **Configuration** tab, enter a name in the **Load input port name** parameter field.

<**EngSpd> — Engine speed** EngSpd (default)

Engine speed, *N*.

#### Dependencies

To specify an engine load port name, on the **Configuration** tab, enter a name in the **Speed input port name** parameter field.

## Output

<**EngTrq> — Power** EngTrq (default)

Engine power,  $T_{brake}$ .

#### Dependencies

- To create this port, on the **Configuration** tab, select **Power**.
- To specify the port name, on the **Power** tab, enter a name in the **Power output port name** parameter field.

#### <IntkAirMassFlw> — Air mass flow

IntkAirMassFlw (default)

Engine air mass flow,  $\dot{m}_{intk}$ .

#### Dependencies

- To create this port, on the **Configuration** tab, select **Air**.
- To specify the port name, on the **Air** tab, enter a name in the **Air output port name** parameter field.

#### <FuelMassFlw> — Fuel flow

FuelMassFlw (default)

Engine fuel flow,  $\dot{m}_{fuel}$ .

#### Dependencies

- To create this port, on the **Configuration** tab, select **Fuel**.
- To specify the port name, on the **Fuel** tab, enter a name in the **Fuel output port name** parameter field.

#### <ExhManGasTemp> — Exhaust temperature

ExhManGasTemp (default)

Engine exhaust temperature,  $T_{exh}$ .

#### Dependencies

- To create this port, on the **Configuration** tab, select **Temperature**.
- To specify the port name, on the **Temperature** tab, enter a name in the **Temperature output port name** parameter field.

<**Bsfc> — Efficiency** Bsfc (default) Brake-specific fuel consumption (BSFC), Eff.

#### Dependencies

- To create this port, on the **Configuration** tab, select **Efficiency**.
- To specify the port name, on the **Efficiency** tab, enter a name in the **Efficiency output port name** parameter field.

#### <*EoHC*> — Hydrocarbon emissions

EoHC (default)

Hydrocarbon emissions, HC.

#### Dependencies

- To create this port, on the **Configuration** tab, select **HC**.
- To specify the port name, on the **HC** tab, enter a name in the **HC output port name** parameter field.

#### <**EoCO**> — Carbon monoxide emissions

EoCO (default)

Carbon monoxide emissions, CO.

#### Dependencies

- To create this port, on the **Configuration** tab, select **CO**.
- To specify the port name, on the **CO** tab, enter a name in the **CO output port name** parameter field.

#### <EoN0x> - Nitric oxide and nitrogen dioxide emissions

EoNOx (default)

Nitric oxide and nitrogen dioxide emissions, NOx.

#### Dependencies

- To create this port, on the **Configuration** tab, select **NOx**.
- To specify the port name, on the **NOx** tab, enter a name in the **NOx output port name** parameter field.

## <**EoC02**> — Carbon dioxide emissions

EoCO2 (default)

Carbon dioxide emissions, CO2.

#### Dependencies

- To create this port, on the **Configuration** tab, select **CO2**.
- To specify the port name, on the **CO2** tab, enter a name in the **CO2 output port name** parameter field.

#### <EoPm> — Particulate matter emissions

EoPm (default)

Particulate matter emissions, PM.

#### Dependencies

- To create this port, on the **Configuration** tab, select **PM**.
- To specify the port name, on the **PM** tab, enter a name in the **PM output port name** parameter field.

## **Parameters**

#### Configuration

# Engine Type — Type of engine image Compression-ignition (CI) (default) | Spark-ignition (SI)

Type of mapped internal combustion engine image to use in the block.

Load input port name — Name
TrgCmd (default)

Engine load input port name.

Breakpoints for load input — Breakpoints
vector

Breakpoints for engine load input.

Speed input port name - Name
EngSpd (default)

Speed input port name.

### Breakpoints for speed input — Breakpoints

vector

Breakpoints for engine speed input.

#### **Output — Create output ports**

power on (default)

Create the output ports.

#### Dependencies

The table summarizes the output ports that are created for each **Output** parameter selection.

| Output Selection | Creates Port   | Creates Tab |
|------------------|----------------|-------------|
| Power            | EngTrq         | Power       |
| Air              | IntkAirMassFlw | Air         |
| Fuel             | FuelMassFlw    | Fuel        |
| Temperature      | ExhManGasTemp  | Temperature |
| Efficiency       | Bsfc           | Efficiency  |
| HC               | EoHC           | нс          |
| СО               | EoC0           | СО          |
| NOx              | EoNOx          | NOx         |
| CO2              | EoC02          | C02         |
| РМ               | EoPm           | РМ          |

#### Power

**Power output port name — Power** BrkTrq (default)

Power output port name.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Power**.

Power table - Power
array

Power table.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Power**.

Air

#### Air output port name — Air AirFlw (default)

Air mass flow output port name.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Air**.

#### Air table — Air array

Air mass flow table.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Air**.

Fuel

# Fuel output port name — Fuel FuelFlw (default)

Fuel output port name.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Fuel**.

# Fuel table — Fuel array

-

## Fuel table.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Fuel**.

#### Temperature

**Temperature output port name — Temperature** Texh (default)

Temperature output port name.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Temperature**.

#### **Temperature table — Temperature**

array

Temperature table.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Temperature**.

#### Efficiency

# Efficiency output port name — Efficiency BSFC (default)

Efficiency output port name.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Efficiency**.

# Efficiency table — Efficiency array

Efficiency table.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **Efficiency**.

HC

#### **HC output port name — Hydrocarbon** E0 HC (default)

Hydrocarbon output port name.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **HC**.

### HC table — Hydrocarbon

array

Hydrocarbon table.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **HC**.

#### СО

C0 output port name — Carbon dioxide
E0 C0 (default)

Carbon monoxide output port name.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **CO**.

### CO table — Carbon dioxide

array

Carbon dioxide table.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **CO**.

#### NOx

NOx output port name — Nitric oxide NO and nitrogen dioxide NO\_2 E0 NOx (default)

NOx output port name. NOx is nitric oxide NO and nitrogen dioxide  $NO_2$ .

#### Dependencies

To create this parameter, on the **Configuration** tab, select **NOx**.

NOx table — Nitric oxide NO and nitrogen dioxide NO<sub>2</sub> array

NOx emissions table. NOx is nitric oxide NO and nitrogen dioxide  $NO_2$ .

#### Dependencies

To create this parameter, on the **Configuration** tab, select **NOx**.

CO2

#### **CO2 output port name — Carbon dioxide** E0 CO2 (default)

Carbon dioxide output port name.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **CO2**.

### CO2 table — Carbon dioxide

array

Carbon dioxide table.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **CO2**.

#### ΡM

#### **PM output port name — Particulate matter** E0 PM (default)

Particulate matter output port name.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **PM**.

### PM table — Particulate matter

array

Particulate matter table.

#### Dependencies

To create this parameter, on the **Configuration** tab, select **PM**.

# See Also

CI Core Engine | SI Core Engine

Introduced in R2017a

# **Mapped CI Engine**

Compression-ignition engine model using lookup tables Library: Propulsion / Combustion Engines



# Description

The Mapped CI Engine block implements a mapped compression-ignition (CI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of either injected fuel mass, *F*, or engine torque, *T*, and engine speed, *N*.

| Input Command Setting | Lookup Tables |
|-----------------------|---------------|
| Fuel mass             | f(F,N)        |
| Torque                | f(T,N)        |

The block enables you to specify lookup tables for these engine characteristics:

- Power
- Air
- Fuel
- Temperature
- Efficiency
- Hydrocarbon (HC) emissions
- Carbon monoxide (CO) emissions

- Nitric oxide and nitrogen dioxide (NOx) emissions
- Carbon dioxide (CO<sub>2</sub>) emissions
- Particulate matter (PM) emissions

To bound the Mapped CI Engine block output, the block does not extrapolate the lookup table data.

## **Cylinder Air Mass**

The block calculates the normalized cylinder air mass using these equations.

$$\begin{split} M_{Nom} &= \frac{P_{std}V_d}{N_{cyl}R_{air}T_{std}} \\ L &= \frac{\left(\frac{60s}{min}\right)Cps\cdot\dot{m}_{air}}{\left(\frac{1000g}{Kg}\right)N_{cyl}\cdot N\cdot M_{Nom}} \end{split}$$

The equations use these variables.

| L                | Normalized cylinder air mass                                                                                                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|
| $M_{Nom}$        | Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg |
| Cps              | Crankshaft revolutions per power stroke, rev/stroke                                                                             |
| P <sub>std</sub> | Standard pressure                                                                                                               |
| $T_{std}$        | Standard temperature                                                                                                            |
| R <sub>air</sub> | Ideal gas constant for air and burned gas mixture                                                                               |
| $V_d$            | Displaced volume                                                                                                                |
| $N_{cvl}$        | Number of engine cylinders                                                                                                      |
| N                | Engine speed                                                                                                                    |

Engine air mass flow, in g/s

 $\dot{m}_{intk}$ 

## **Turbocharger Lag**

To model turbocharger lag, select **Include turbocharger lag effect**. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified **Input command** setting.

| Colculation                                                          | Input command Parameter Setting                                                                                      |                                                                                                                                                                                                                     |                           |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Calculation                                                          | Fuel mass                                                                                                            | Torque                                                                                                                                                                                                              |                           |
| Dynamic torque                                                       | $\frac{dF_{max}}{dt} = \frac{1}{\tau_{eng}} \left( F_{cmd} - F_{max} \right)$                                        | $\frac{dT_{max}}{dt} = \frac{1}{\tau_{eng}} (T_{cmd} - T_{max})$                                                                                                                                                    |                           |
| Fuel mass per<br>injection or torque -<br>with turbocharger<br>lag   | $F = \begin{cases} F_{cmd} & \text{when } F_{cmd} < \\ F_{max} & \text{when } F_{cmd} \end{cases}$                   | $\begin{cases} F_{\max} \\ F_{\max} \\ T_{max} \\ \end{cases} = \begin{cases} T_{cmd} & \text{when } T_{cmd} < T_{max} \\ T_{max} & \text{when } T_{cmd} \ge T_{max} \\ \end{cases}$                                | ,<br>max<br>nax           |
| Fuel mass per<br>injection or torque-<br>without turbocharger<br>lag | $F = F_{cmd} = F_{max}$                                                                                              | $T_{target} = T_{cmd} = T_{max}$                                                                                                                                                                                    |                           |
| Boost time constant                                                  | $\tau_{bst} = \begin{cases} \tau_{bst, rising} & \text{when } F \\ \tau_{bst, falling} & \text{when } F \end{cases}$ | $ \begin{aligned} & F_{cmd} > F_{max} \\ & \tau_{cmd} \leq F_{max}^{sst} = \begin{cases} \tau_{bst, rising} & \text{when } T_{cmd} \\ \tau_{bst, falling} & \text{when } T_{cmd} \end{cases} \leq 1 \end{aligned} $ | $T_{ m max}$ $T_{ m max}$ |
| Final time constant                                                  | $\tau_{eng} = \begin{cases} \tau_{nat} & \text{when } T_{brake} \\ \tau_{bst} & \text{when } T_{brake} \end{cases}$  | $a < f_{bst}(N)$<br>$\geq f_{bst}(N)$                                                                                                                                                                               |                           |

The equations use these variables.

*T*<sub>brake</sub> Brake torque

| F                                        | Fuel mass per injection                                     |
|------------------------------------------|-------------------------------------------------------------|
| $F_{cmd}$ , $F_{max}$                    | Commanded and maximum fuel mass per injection, respectively |
| $T_{target}$ , $T_{cmd}$ , $T_{max}$     | Target, commanded, and maximum torque, respectively         |
| $	au_{bst}$                              | Boost time constant                                         |
| $	au_{bst,rising}$ , $	au_{bst,falling}$ | Boost rising and falling time constant, respectively        |
| $	au_{eng}$                              | Final time constant                                         |
| $	au_{nat}$                              | Time constant below the boost torque speed line             |
| $f_{bst}(N)$                             | Boost torque/speed line                                     |
| Ν                                        | Engine speed                                                |

## Ports

## Input

### FuelMassCmd — Injected fuel mass command

scalar

Injected fuel mass command, *F*, in mg/inj.

#### Dependencies

To create this port, for **Input command**, select Fuel mass.

### **TrqCmd** — **Torque command**

scalar

Torque command, T, in N·m.

### Dependencies

To create this port, for **Input command**, select **Torque**.

# EngSpd — Engine speed scalar

Engine speed, *N*, in rpm.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal         | Description                                                                                  | Units                  |
|----------------|----------------------------------------------------------------------------------------------|------------------------|
| IntkGasMassFlw | Engine air mass flow output                                                                  | kg/s                   |
| NrmlzdAirChrg  | Normalized engine cylinder air mass                                                          | N/A                    |
| Afr            | Air-fuel ratio (AFR)                                                                         | N/A                    |
| FuelMassFlw    | Engine fuel flow output                                                                      | kg/s                   |
| ExhManGasTemp  | Engine exhaust gas temperature                                                               | K                      |
| EngTrq         | Engine torque output                                                                         | N·m                    |
| EngSpd         | Engine speed                                                                                 | rpm                    |
| CrkAng         | Engine crankshaft absolute angle                                                             | degrees crank<br>angle |
|                | $\int_{0}^{(360)Cps} EngSpd \frac{180}{30} d\theta$<br>where $Cps$ is crankshaft revolutions |                        |
|                | per power stroke.                                                                            |                        |
| Bsfc           | Engine brake-specific fuel consumption<br>(BSFC)                                             | g/kWh                  |
| ЕоНС           | Engine out hydrocarbon emission mass flow                                                    | kg/s                   |
| EoC0           | Engine out carbon monoxide emission mass flow rate                                           | kg/s                   |
| EoNOx          | Engine out nitric oxide and nitrogen dioxide emissions mass flow                             | kg/s                   |
| EoC02          | Engine out carbon dioxide emission mass flow                                                 | kg/s                   |

| Signal | Description                                      | Units |
|--------|--------------------------------------------------|-------|
| EoPM   | Engine out particulate matter emission mass flow | kg/s  |

#### EngTrg — Power

scalar

Engine power,  $T_{brake}$ , in N·m.

## **Parameters**

#### **Block Options**

#### Input command — Table functions

Fuel mass (default) | Torque

The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of either injected fuel mass, F, or engine torque, T, and engine speed, N.

| Input Command Setting | Lookup Tables                    |
|-----------------------|----------------------------------|
| Fuel mass             | f(F,N)                           |
| Torque                | <i>f</i> ( <i>T</i> , <i>N</i> ) |

#### Dependencies

- Selecting Fuel mass enables Breakpoints for commanded fuel mass input, f tbrake f bpt.
- Selecting Torgue enables Breakpoints for commanded torgue input, f tbrake t bpt.

#### Include turbocharger lag effect — Increase time constant off (default)

To model turbocharger lag, select **Include turbocharger lag effect**. Turbocharger lag limits the maximum fuel mass per injection. To model the maximum fuel mass per injection, the block uses a first-order system with a time constant. At low torque, the engine does not require boost to provide sufficient air flow. When the requested fuel mass requires boost, the block uses a time constant to determine the maximum fuel mass per injection. The block uses these equations for the specified **Input command** setting.

| Calculation                                                          | Input command Parameter Setting                                                                                     |                                                                                                                                                                                                     |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                      | Fuel mass                                                                                                           | Torque                                                                                                                                                                                              |
| Dynamic torque                                                       | $\frac{dF_{max}}{dt} = \frac{1}{\tau_{eng}} \left( F_{cmd} - F_{max} \right)$                                       | $\frac{dT_{max}}{dt} = \frac{1}{\tau_{eng}} (T_{cmd} - T_{max})$                                                                                                                                    |
| Fuel mass per<br>injection or torque -<br>with turbocharger<br>lag   | $F = \begin{cases} F_{cmd} & \text{when } F_{cmd} < \\ F_{max} & \text{when } F_{cmd} \end{cases}$                  | $\begin{cases} F_{\max} \\ F_{\max} \\ T_{max} \\ \end{cases} = \begin{cases} T_{cmd} & \text{when } T_{cmd} \\ T_{max} \\ \end{cases} & \text{when } T_{cmd} \\ \ge T_{\max} \\ \end{cases}$       |
| Fuel mass per<br>injection or torque-<br>without turbocharger<br>lag | $F = F_{cmd} = F_{max}$                                                                                             | $T_{target} = T_{cmd} = T_{max}$                                                                                                                                                                    |
| Boost time constant                                                  | $\tau_{bst} = \begin{cases} \tau_{bst, ising} & \text{when } F \\ \tau_{bst, falling} & \text{when } F \end{cases}$ | $ \begin{aligned} & \mathcal{F}_{cmd} > F_{max} \\ & \mathcal{T}_{bst} = \begin{cases} \tau_{bst, rising} & \text{when } T_{cmd} \\ & \tau_{bst, falling} & \text{when } T_{cmd} \\ \end{aligned} $ |
| Final time constant                                                  | $\tau_{eng} = \begin{cases} \tau_{nat} & \text{when } T_{brake} \\ \tau_{bst} & \text{when } T_{brake} \end{cases}$ | $p < f_{bst}(N)$<br>$\geq f_{bst}(N)$                                                                                                                                                               |

The equations use these variables.

| T <sub>brake</sub>                    | Brake torque                                                |
|---------------------------------------|-------------------------------------------------------------|
| F                                     | Fuel mass per injection                                     |
| $F_{cmd}$ , $F_{max}$                 | Commanded and maximum fuel mass per injection, respectively |
| $T_{target}, T_{cmd}, T_{max}$        | Target, commanded, and maximum torque, respectively         |
| $	au_{bst}$                           | Boost time constant                                         |
| $	au_{bst,rising}, 	au_{bst,falling}$ | Boost rising and falling time constant, respectively        |
| $	au_{eng}$                           | Final time constant                                         |
| $	au_{nat}$                           | Time constant below the boost torque speed line             |
| $f_{bst}(N)$                          | Boost torque/speed line                                     |
| Ν                                     | Engine speed                                                |

#### Dependencies

Selecting **Include turbocharger lag effect** enables these parameters:

- Boost torque line, f tbrake bst
- Time constant below boost line, tau nat
- Rising maximum fuel mass boost time constant, tau bst rising
- Falling maximum fuel mass boost time constant, tau bst falling

#### Configuration

Breakpoints for commanded fuel mass input, f tbrake f bpt — **Breakpoints** vector

Breakpoints, in mg/inj.

#### Dependencies

Setting **Input command** to Fuel mass enables this parameter.

Breakpoints for commanded torque input, f tbrake t bpt — Breakpoints vector

Breakpoints, in N·m.

#### Dependencies

Setting **Input command** to **Torque** enables this parameter.

Breakpoints for engine speed input, f\_tbrake\_n\_bpt - Breakpoints vector

Breakpoints, in rpm.

Number of cylinders, NCyl - Number scalar

Number of cylinders.

#### Crank revolutions per power stroke, Cps — Crank revolutions scalar

Crank revolutions per power stroke.

# **Total displaced volume, Vd — Volume** scalar

Volume displaced by engine, in m<sup>3</sup>.

```
Ideal gas constant air, Rair - Constant
scalar
```

Ideal gas constant of air and residual gas entering the engine intake port, in J/(kg\*K).

```
Air standard pressure, Pstd — Pressure scalar
```

Standard air pressure, in Pa.

Air standard temperature, Tstd — Temperature scalar

Standard air temperature, in K.

Boost torque line, f\_tbrake\_bst — Boost lag
vector

Boost torque line,  $f_{bst}(N)$ , in N·m.

#### Dependencies

To enable this parameter, select Include turbocharger lag effect.

**Time constant below boost line — Time constant below** scalar

Time constant below boost line,  $\tau_{nat}$ , in s.

#### Dependencies

To enable this parameter, select Include turbocharger lag effect.

Rising maximum fuel mass boost time constant, tau\_bst\_rising — Rising
time constant
scalar

Rising maximum fuel mass boost time constant,  $\tau_{bst,rising}$ , in s.

#### Dependencies

To enable this parameter, select Include turbocharger lag effect.

# Falling maximum fuel mass boost time constant, tau\_bst\_falling — Falling time constant

scalar

Falling maximum fuel mass boost time constant,  $\tau_{bst, falling}$ , in s.

#### Dependencies

To enable this parameter, select Include turbocharger lag effect.

Power

Brake torque map, f\_tbrake — Torque table
array

#### Dependencies

| Input Command<br>Setting | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                | The engine brake torque lookup table is a function of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | commanded fuel mass and engine speed, $T_{brake} = f(F, N)$ , where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | • $T_{brake}$ is engine torque, in N·m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | • <i>F</i> is commanded fuel mass, in mg per injection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | • <i>N</i> is engine speed, in rpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7                        | and a set of the set o |
| Torque                   | The engine brake torque lookup table is a function of target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | torque and engine speed, $T_{brake} = f(T_{target}, N)$ , where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | • $T_{brake}$ is engine torque, in N·m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | • $T_{target}$ is target torque, in N·m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | • <i>N</i> is engine speed, in rpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# Plot brake torque map — Plot table button

Click to plot table.

### Air

# Air mass flow map, f\_air — Lookup table array

### Dependencies

| Input Command<br>Setting | Description                                                      |
|--------------------------|------------------------------------------------------------------|
| Fuel mass                | The air mass flow lookup table is a function of commanded fuel   |
|                          | mass and engine speed, $\dot{m}_{intk} = f(F_{max}, N)$ , where: |
|                          | • $\dot{m}_{intk}$ is engine air mass flow, in kg/s.             |
|                          | • $F_{max}$ is commanded fuel mass, in mg per injection.         |
|                          | • <i>N</i> is engine speed, in rpm.                              |
|                          | 0.15<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.      |
| Torque                   | The air mass flow lookup table is a function of maximum torque   |
|                          | and engine speed, $\dot{m}_{intk} = f(T_{max}, N)$ , where:      |
|                          | • $\dot{m}_{intk}$ is engine air mass flow, in kg/s.             |
|                          | • $T_{max}$ is maximum torque, in N·m.                           |
|                          | • <i>N</i> is engine speed, in rpm.                              |

# Plot air mass map — Plot table button

Click to plot table.

Fuel

# Fuel flow map, f\_fuel — Lookup table array

| Input Command<br>Setting | Description                                                                                                               |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                | The engine fuel flow lookup table is a function of commanded fuel mass and engine speed, $MassFlow = f(F, N)$ , where:    |
|                          | • <i>MassFlow</i> is engine fuel mass flow, in kg/s.                                                                      |
|                          | • <i>F</i> is commanded fuel mass, in mg per injection.                                                                   |
|                          | • <i>N</i> is engine speed, in rpm.                                                                                       |
|                          | × 10 <sup>-3</sup><br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                      |
| Torque                   | The engine fuel flow lookup table is a function of target torque and engine speed, $MassFlow = f(T_{target}, N)$ , where: |
|                          | • <i>MassFlow</i> is engine fuel mass flow, in kg/s.                                                                      |
|                          | • $T_{target}$ is target torque, in N·m.                                                                                  |
|                          | • <i>N</i> is engine speed, in rpm.                                                                                       |

Plot fuel flow map — Plot table
button

Click to plot table.

#### Temperature

# Exhaust temperature map, f\_texh — Lookup table $\ensuremath{\mathsf{array}}$

| Input Command<br>Setting | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                | The engine exhaust temperature table is a function of commanded fuel mass and engine speed, $T_{exh} = f(F, N)$ , where:<br>• $T_{exh}$ is exhaust temperature, in K.<br>• $F$ is commanded fuel mass, in mg per injection.<br>• $N$ is engine speed, in rpm.<br>• $\int_{1200}^{1400} \int_{1200}^{0} \int_{10}^{0} \int_{10}^{0}$ |
| Torque                   | <ul> <li>The engine exhaust temperature table is a function of target torque and engine speed, T<sub>exh</sub> = f(T<sub>target</sub>, N), where:</li> <li>T<sub>exh</sub> is exhaust temperature, in K.</li> <li>T<sub>target</sub> is target torque, in N·m.</li> <li>N is engine speed, in rpm.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Plot exhaust temperature map - Plot table
button

Click to plot table.

#### Efficiency

### BSFC map, f\_eff — Lookup table

array

| Input Command<br>Setting | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                | <ul> <li>The brake-specific fuel consumption (BSFC) efficiency is a function of commanded fuel mass and engine speed, BSFC= f(F, N), where:</li> <li>BSFC is BSFC, in g/kWh.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | • <i>F</i> is commanded fuel mass, in mg per injection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | • <i>N</i> is engine speed, in rpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | and the second s |
| Torque                   | The brake-specific fuel consumption (BSFC) efficiency is a function of target torque and engine speed, $BSFC = f(T_{target}, N)$ , where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | • <i>BSFC</i> is BSFC, in g/kWh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | • $T_{target}$ is target torque, in N·m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | • <i>N</i> is engine speed, in rpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# Plot BSFC map — Plot table button

Click to plot table.

### HC

# E0 HC map, f\_hc — Lookup table array

| Input Command<br>Setting | Description                                                                                                                                                                                                                                                 |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fuel mass                | <ul> <li>The engine-out hydrocarbon emissions are a function of commanded fuel mass and engine speed, EO HC = f(F, N), where:</li> <li>EO HC is engine-out hydrocarbon emissions, in kg/s.</li> <li>E is commanded fuel mass in mg per injection</li> </ul> |  |
|                          | <ul> <li>N is engine speed, in rpm.</li> </ul>                                                                                                                                                                                                              |  |
|                          | x 10 <sup>-8</sup><br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                 |  |
| Torque                   | The engine-out hydrocarbon emissions are a function of target torque and engine speed, $EO HC = f(T_{target}, N)$ , where:                                                                                                                                  |  |
|                          | • <i>EO HC</i> is engine-out hydrocarbon emissions, in kg/s.                                                                                                                                                                                                |  |
|                          | • $T_{target}$ is target torque, in N·m.                                                                                                                                                                                                                    |  |
|                          | • <i>N</i> is engine speed, in rpm.                                                                                                                                                                                                                         |  |

## Plot EO HC map — Plot table

button

Click to plot table.

### CO

E0 C0 map, f\_co — Lookup table
array

| Input Command<br>Setting | Description                                                                                                                                                                                                                                                                                              |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                | <ul> <li>The engine-out carbon monoxide emissions are a function of commanded fuel mass and engine speed, EO CO= f(F, N), where:</li> <li>EO CO is engine-out carbon monoxide emissions, in kg/s.</li> <li>F is commanded fuel mass, in mg per injection.</li> <li>N is engine speed, in rpm.</li> </ul> |
|                          | x 10 <sup>-6</sup><br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5<br>2.5                                                                                                                                                                                                                 |
| Input Command<br>Setting | Description                                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Torque                   | The engine-out carbon monoxide emissions are a function of target torque and engine speed, $EO CO = f(T_{target}, N)$ , where: |
|                          | • EO CO is engine-out carbon monoxide emissions, in kg/s.                                                                      |
|                          | • $T_{target}$ is target torque, in N·m.                                                                                       |
|                          | • <i>N</i> is engine speed, in rpm.                                                                                            |

### Plot E0 C0 map — Plot table

button

Click to plot table.

### NOx

### EO NOx map, f\_nox — Lookup table

array

| Input Command<br>Setting | Description                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                | <ul> <li>The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded fuel mass and engine speed, EO NOx= f(F, N), where:</li> <li>EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.</li> <li>F is commanded fuel mass, in mg per injection.</li> <li>N is engine speed, in rpm.</li> </ul> |
|                          | x 10 <sup>-4</sup><br>2.5<br>2<br>2<br>2<br>2<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                       |
| Torque                   | <ul> <li>The engine-out nitric oxide and nitrogen dioxide emissions are a function of target torque and engine speed, EO NOx = f(T<sub>target</sub>, N), where:</li> <li>EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.</li> <li>Tweet is target torque, in N·m.</li> </ul>                                        |
|                          | <ul> <li><i>N</i> is engine speed, in rpm.</li> </ul>                                                                                                                                                                                                                                                                                          |

### Plot EO NOx map — Plot table

button

Click to plot table.

### CO2

### E0 C02 map, f\_co2 — Lookup table

array

### Dependencies

| Input Command<br>Setting | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel mass                | The engine-out carbon dioxide emissions are a function of commanded fuel mass and engine speed, $EO CO2 = f(F, N)$ , where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | <ul> <li>EO CO2 is engine-out carbon dioxide emissions, in kg/s.</li> <li>E is commonded fuel mass, in mg per injection.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | • F is commanded fuel mass, in hig per injection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | Provide the second seco |
| Torque                   | The engine-out carbon dioxide emissions are a function of target torque and engine speed, $EO CO2 = f(T_{target}, N)$ , where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | • T is target targue in N.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | Nie ongine eneed in mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          | • N is engine speed, in rpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## Plot CO2 map — Plot table button

Click to plot table.

#### РМ

## E0 PM map, f\_pm — Lookup table array

### Dependencies

| Input Command<br>Setting | Description                                                                                                       |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Fuel mass                | The engine-out PM emissions are a function of commanded fuel mass and engine speed, where:                        |  |
|                          | • EO PM is engine-out PM emissions, in kg/s.                                                                      |  |
|                          | • <i>F</i> is commanded fuel mass, in mg per injection.                                                           |  |
|                          | • <i>N</i> is engine speed, in rpm.                                                                               |  |
| Torque                   | The engine-out PM emissions are a function of target torque and engine speed, $EO PM = f(T_{target}, N)$ , where: |  |
|                          | • EO PM is engine-out PM emissions, in kg/s.                                                                      |  |
|                          | • $T_{target}$ is target torque, in N·m.                                                                          |  |
|                          | • <i>N</i> is engine speed, in rpm.                                                                               |  |

### Plot EO PM map — Plot table

button

Click to plot table.

### See Also

CI Core Engine

### **Topics**

"Generate Mapped CI Engine from a Spreadsheet"

### Introduced in R2017a

## **Mapped SI Engine**

Spark-ignition engine model using lookup tables Library: Propulsion / Combustion Engines



## Description

The Mapped SI Engine block implements a mapped spark-ignition (SI) engine model using power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission performance lookup tables. You can use the block for:

- Hardware-in-the-loop (HIL) engine control design
- Vehicle-level fuel economy and performance simulations

The block enables you to specify lookup tables for these engine characteristics. The lookup tables, developed with the Model-Based Calibration Toolbox, are functions of commanded torque,  $T_{cmd}$ , brake torque,  $T_{brake}$ , and engine speed, N.

- Power  $f(T_{cmd}, N)$
- Air  $f(T_{brake}, N)$
- Fuel  $-f(T_{brake},N)$
- Temperature  $-f(T_{brake},N)$
- Efficiency  $-f(T_{brake}, N)$
- Hydrocarbon (HC) emissions  $-f(T_{brake},N)$
- Carbon monoxide (CO) emissions  $-f(T_{brake},N)$
- Nitric oxide and nitrogen dioxide (NOx) emissions  $-f(T_{brake}, N)$
- Carbon dioxide (CO<sub>2</sub>) emissions  $-f(T_{brake},N)$
- Particulate matter (PM) emissions  $-f(T_{brake}, N)$

To bound the Mapped SI Engine block output, the block does not extrapolate the lookup table data.

### **Cylinder Air Mass**

The block calculates the normalized cylinder air mass using these equations.

$$\begin{split} M_{Nom} &= \frac{P_{std}V_d}{N_{cyl}R_{air}T_{std}} \\ L &= \frac{\left(\frac{60s}{min}\right)Cps\cdot\dot{m}_{air}}{\left(\frac{1000g}{Kg}\right)N_{cyl}\cdot N\cdot M_{Nom}} \end{split}$$

The equations use these variables.

| L                | Normalized cylinder air mass                                                                                                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|
| $M_{Nom}$        | Nominal engine cylinder air mass at standard temperature and pressure, piston at bottom dead center (BDC) maximum volume, in kg |
| Cps              | Crankshaft revolutions per power stroke, rev/stroke                                                                             |
| P <sub>std</sub> | Standard pressure                                                                                                               |
| $T_{std}$        | Standard temperature                                                                                                            |
| R <sub>air</sub> | Ideal gas constant for air and burned gas mixture                                                                               |
| $V_d$            | Displaced volume                                                                                                                |
| $N_{c\nu l}$     | Number of engine cylinders                                                                                                      |
| Ň                | Engine speed                                                                                                                    |
| $\dot{m}_{intk}$ | Engine air mass flow, in g/s                                                                                                    |

### **Turbocharger Lag**

To model turbocharger lag, select **Include turbocharger lag effect**. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

| Dynamic torque         | $\frac{dT_{brake}}{dt} = \frac{1}{\tau_{eng}} (T_{stdy} - T_{brake})$                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boost time<br>constant | $\tau_{bst} = \begin{cases} \tau_{bst,rising} & \text{when } T_{stdy} > T_{brake} \\ \tau_{bst,falling} & \text{when } T_{stdy} \le T_{brake} \end{cases}$ |
| Final time<br>constant | $\tau_{eng} = \begin{cases} \tau_{thr} & \text{when } T_{brake} < f_{bst}(N) \\ \tau_{bst} & \text{when } T_{brake} \ge f_{bst}(N) \end{cases}$            |

The equations use these variables.

| T <sub>brake</sub>        | Brake torque                                         |
|---------------------------|------------------------------------------------------|
| $T_{stdy}$                | Steady-state target torque                           |
| $	au_{bst}$               | Boost time constant                                  |
| τ <sub>bst,rising</sub> , | Boost rising and falling time constant, respectively |
| $	au_{bst,falling}$       |                                                      |
| $	au_{eng}$               | Final time constant                                  |
| $	au_{thr}$               | Time constant during throttle control                |
| $f_{bst}(N)$              | Boost torque speed line                              |
| N                         | Engine speed                                         |
|                           |                                                      |

## Ports

### Input

TrqCmd — Commanded torque
scalar

Torque,  $T_{cmd}$ , in N·m.

EngSpd — Engine speed scalar

Engine speed, *N*, in rpm.

### Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal          | Description                                                                                                           | Units                  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------|------------------------|
| IntkGassMassFlw | Engine air mass flow output                                                                                           | kg/s                   |
| NrmlzdAirChrg   | Normalized engine cylinder air mass                                                                                   | N/A                    |
| Afr             | Air-fuel ratio (AFR)                                                                                                  | N/A                    |
| FuelMassFlw     | Engine fuel flow output                                                                                               | kg/s                   |
| ExhManGasTemp   | Engine exhaust gas temperature                                                                                        | K                      |
| EngTrq          | Engine torque output                                                                                                  | N·m                    |
| EngSpd          | Engine speed                                                                                                          | rpm                    |
| CrkAng          | Engine crankshaft absolute angle                                                                                      | degrees crank<br>angle |
|                 | $\int_{0}^{(360)Cps} EngSpd \frac{180}{30} d\theta$<br>where <i>Cps</i> is crankshaft revolutions<br>per power stroke |                        |
| Bsfc            | Engine brake-specific fuel consumption<br>(BSFC)                                                                      | g/kWh                  |
| ЕоНС            | Engine out hydrocarbon emission mass flow                                                                             | kg/s                   |
| EoC0            | Engine out carbon monoxide emission mass flow rate                                                                    | kg/s                   |
| EoNOx           | Engine out nitric oxide and nitrogen dioxide emissions mass flow                                                      | kg/s                   |
| EoC02           | Engine out carbon dioxide emission mass flow                                                                          | kg/s                   |

| Signal | Description                                      | Units |
|--------|--------------------------------------------------|-------|
| EoPM   | Engine out particulate matter emission mass flow | kg/s  |

### EngTrq — Engine brake torque

scalar

Engine brake torque,  $T_{brake}$ , in N·m.

### **Parameters**

### **Block Options**

## Include turbocharger lag effect — Increase time constant off (default)

To model turbocharger lag, select **Include turbocharger lag effect**. During throttle control, the time constant models the manifold filling and emptying dynamics. When the torque request requires a turbocharger boost, the block uses a larger time constant to represent the turbocharger lag. The block uses these equations.

| Dynamic torque         | $\frac{dT_{brake}}{dt} = \frac{1}{\tau_{eng}} (T_{stdy} - T_{brake})$                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Boost time<br>constant | $\tau_{bst} = \begin{cases} \tau_{bst,rising} & \text{when } T_{stdy} > T_{brake} \\ \tau_{bst,falling} & \text{when } T_{stdy} \le T_{brake} \end{cases}$ |
| Final time<br>constant | $\tau_{eng} = \begin{cases} \tau_{thr} & \text{when } T_{brake} < f_{bst}(N) \\ \tau_{bst} & \text{when } T_{brake} \ge f_{bst}(N) \end{cases}$            |

The equations use these variables.

*T*<sub>brake</sub> Brake torque

*T<sub>stdy</sub>* Steady-state target torque

| $	au_{bst}$               | Boost time constant                                  |
|---------------------------|------------------------------------------------------|
| τ <sub>bst,rising</sub> , | Boost rising and falling time constant, respectively |
| $	au_{bst,falling}$       |                                                      |
| $	au_{eng}$               | Final time constant                                  |
| $	au_{thr}$               | Time constant during throttle control                |
| $f_{bst}(N)$              | Boost torque speed line                              |
| Ν                         | Engine speed                                         |

Selecting Include turbocharger lag effect enables these parameters:

- Boost torque line, f\_tbrake\_bst
- Time constant below boost line, tau\_thr
- Rising torque boost time constant, tau\_bst\_rising
- Falling torque boost time constant, tau\_bst\_falling

#### Configuration

Breakpoints for commanded torque, f\_tbrake\_t\_bpt — Breakpoints
vector

Breakpoints, in N·m.

Breakpoints for engine speed input, f\_tbrake\_n\_bpt — Breakpoints
vector

Breakpoints, in rpm.

### Number of cylinders, NCyl - Number

scalar

Number of cylinders.

## **Crank revolutions per power stroke, Cps — Crank revolutions** scalar

Crank revolutions per power stroke.

## **Total displaced volume, Vd — Volume**

Volume displaced by engine, in m<sup>3</sup>.

### Ideal gas constant air, Rair — Constant

scalar

Ideal gas constant of air and residual gas entering the engine intake port, in J/(kg\*K).

```
Air standard pressure, Pstd — Pressure scalar
```

Standard air pressure, in Pa.

Air standard temperature, Tstd — Temperature scalar

Standard air temperature, in K.

## Boost torque line, f\_tbrake\_bst — Boost lag vector

Boost torque line,  $f_{bst}(N)$ , in N·m.

### Dependencies

To enable this parameter, select Include turbocharger lag effect.

**Time constant below boost line — Time constant below** scalar

Time constant below boost line,  $\tau_{thr}$ , in s.

### Dependencies

To enable this parameter, select Include turbocharger lag effect.

# Rising torque boost time constant, tau\_bst\_rising — Rising time constant

scalar

Rising torque boost time constant,  $\tau_{bst,rising}$ , in s.

To enable this parameter, select Include turbocharger lag effect.

# Falling torque boost time constant, tau\_bst\_falling — Falling time constant

scalar

Falling torque boost time constant,  $\tau_{bst,falling}$ , in s.

#### Dependencies

To enable this parameter, select Include turbocharger lag effect.

#### Power

## Brake torque map, f\_tbrake — Torque table array

The engine torque lookup table is a function of commanded engine torque and engine speed,  $T = f(T_{cmd}, N)$ , where:

- *T* is engine torque, in N·m.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



Plot brake torque map — Plot table
button

Click to plot table.

### Air

.

## Air mass flow map, f\_air — Lookup table array

The engine air mass flow lookup table is a function of commanded engine torque and engine speed,  $\dot{m}_{intk} = f(T_{cmd}, N)$ , where:

- $\dot{m}_{intk}$  is engine air mass flow, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## Plot air mass map — Plot table button

Click to plot table.

Fuel

### Fuel flow map, f\_fuel — Lookup table

array

The engine fuel mass flow lookup table is a function of commanded engine torque and engine speed,  $MassFlow = f(T_{cmd}, N)$ , where:

- MassFlow is engine fuel mass flow, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.

- *N* is engine speed, in rpm.

## Plot fuel flow map — Plot table button

Click to plot table.

#### Temperature

## Exhaust temperature map, f\_texh — Lookup table array

The engine exhaust temperature lookup table is a function of commanded engine torque and engine speed,  $T_{exh} = f(T_{cmd}, N)$ , where:

- $T_{exh}$  is exhaust temperature, in K.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



# Plot exhaust temperature map — Plot table button

Click to plot table.

### Efficiency

### BSFC map, f\_eff — Lookup table

array

The brake-specific fuel consumption (BSFC) efficiency is a function of commanded engine torque and engine speed,  $BSFC = f(T_{cmd}, N)$ , where:

- *BSFC* is BSFC, in g/kWh.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



```
Plot BSFC map — Plot table
button
```

Click to plot table.

HC

## E0 HC map, f\_hc — Lookup table array

The engine-out hydrocarbon emissions are a function of commanded engine torque and engine speed,  $EO HC = f(T_{cmd}, N)$ , where:

- EO HC is engine-out hydrocarbon emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## Plot E0 HC map — Plot table button

Click to plot table.

### СО

### E0 C0 map, f\_co — Lookup table

array

The engine-out carbon monoxide emissions are a function of commanded engine torque and engine speed,  $EO CO = f(T_{cmd}, N)$ , where:

- EO CO is engine-out carbon monoxide emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## Plot E0 C0 map — Plot table button

Click to plot table.

### NOx

### E0 NOx map, $f_{nox} - Lookup$ table

array

The engine-out nitric oxide and nitrogen dioxide emissions are a function of commanded engine torque and engine speed,  $EO NOx = f(T_{cmd}, N)$ , where:

- EO NOx is engine-out nitric oxide and nitrogen dioxide emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



## Plot E0 NOx map — Plot table button

button

Click to plot table.

### CO2

## E0 C02 map, f\_co2 — Lookup table array

The engine-out carbon dioxide emissions are a function of commanded engine torque and engine speed,  $EO CO2 = f(T_{cmd}, N)$ , where:

- EO CO2 is engine-out carbon dioxide emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.



Plot CO2 map — Plot table
button

Click to plot table.

РМ

## E0 PM map, f\_pm — Lookup table array

The engine-out particulate matter emissions are a function of commanded engine torque and engine speed, where:

- *EO PM* is engine-out PM emissions, in kg/s.
- $T_{cmd}$  is commanded engine torque, in N·m.
- *N* is engine speed, in rpm.

### Plot E0 PM map — Plot table

button

Click to plot table.

## See Also

SI Core Engine

### **Topics**

"Generate Mapped SI Engine from a Spreadsheet"

### Introduced in R2017a

# Scenario Creation Blocks — Alphabetical List

## **Drive Cycle Source**

Standard or specified longitudinal drive cycle Library: Vehicle Scenario Builder



## Description

The Drive Cycle Source block generates a standard or user-specified longitudinal drive cycle. The block output is the specified vehicle longitudinal speed, which you can use to:

- Predict the engine torque and fuel consumption that a vehicle requires to achieve desired speed and acceleration for a given gear shift reference.
- Produce realistic velocity and shift references for closed loop acceleration and braking commands for vehicle control and plant models.
- Study, tune, and optimize vehicle control, system performance, and system robustness over multiple drive cycles.

For the drive cycles, you can use:

- Drive cycles from predefined sources. By default, the block includes the FTP-75 drive cycle. To install additional drive cycles from a support package, see "Install Drive Cycle Data". The support package has drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
- Workspace variables.
- .mat, .xls, .xlsx, or .txt files.
- Wide open throttle (WOT) parameters, including initial and nominal reference speed, deceleration start time, and final reference speed.

To achieve the goals listed in the table, use the specified Drive Cycle Source block parameter options.

| Goal                                                                                  | Action                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Repeat the drive cycle if the simulation run time exceeds the drive cycle length.     | Select <b>Repeat cyclically</b> .                                                                                                                                                                                                                                                                   |
| Output the acceleration, as<br>calculated by Savitzky-Golay<br>differentiation.       | Select <b>Output acceleration</b> .                                                                                                                                                                                                                                                                 |
| Specify a sample period for discrete applications.                                    | Specify a <b>Output sample period (0 for continuous)</b> , <b>dt</b> parameter.                                                                                                                                                                                                                     |
| Update the simulation run time<br>so that it equals the length of<br>the drive cycle. | Click <b>Update simulation time</b> . If a model configuration reference exists, the block does not enable this option.                                                                                                                                                                             |
| Plot the drive cycle in a<br>MATLAB® figure.                                          | Click <b>Plot drive cycle</b> .                                                                                                                                                                                                                                                                     |
| Specify the drive cycle using a workspace variable.                                   | <ul> <li>Click Specify variable. The block:</li> <li>Sets the Drive cycle source parameter to Workspace variable.</li> <li>Enables the From workspace parameter.</li> <li>Specify the workspace variable so that it contains time, velocity, and, optionally, the gear shift schedule.</li> </ul>   |
| Specify the drive cycle using a file.                                                 | <ul> <li>Click Select file. The block:</li> <li>Sets the Drive cycle source parameter<br/>to .mat, .xls, .xlsx or .txt file.</li> <li>Enables the Drive cycle source file parameter.</li> <li>Specify a file that contains time, velocity, and,<br/>optionally, the gear shift schedule.</li> </ul> |

| Goal                                                    | Action                                                                                                                                                  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output drive cycle gear.                                | Specify a drive cycle that contains a gear shift schedule. You can use:                                                                                 |
|                                                         | • A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.                                 |
|                                                         | Workspace variables.                                                                                                                                    |
|                                                         | <ul> <li>.mat, .xls, .xlsx, or .txt files.</li> </ul>                                                                                                   |
|                                                         | Click <b>Output gear shift data</b> .                                                                                                                   |
| Install additional drive cycles from a support package. | Click <b>Install additional drive cycles</b> . The block<br>enables the parameter if you can install additional drive<br>cycles from a support package. |

## Ports

### Output

### Speed — Vehicle reference speed

scalar

Vehicle reference speed, in units that you specify. To specify the units, use the **Output velocity units** parameter.

### Acceleration — Vehicle reference acceleration

scalar

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

### Dependencies

To create the output acceleration port, select **Output acceleration**. Selecting **Output acceleration** enables the **Output acceleration units** parameter.

**Gear** — Vehicle gear scalar

To create this port:

- **1** Specify a drive cycle that contains a gear shift schedule. You can use:
  - A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
  - Workspace variables.
  - .mat, .xls, .xlsx, or .txt files.
- 2 Select **Output gear shift** data.

### **Parameters**

### **Drive Cycle**

### Drive cycle source — Select the drive cycle source

```
FTP75(default)|Wide Open Throttle (WOT)|Workspace variable
|.mat, .xls, .xlsx or .txt file
```

- FTP75 Load the FTP75 drive cycle from a .mat file into a 1-D Lookup Table block. The FTP75 represents a city drive cycle that you can use to determine tailpipe emissions and fuel economy of passenger cars. To install additional drive cycles from a support package, see "Install Drive Cycle Data".
- Wide Open Throttle (WOT) Use WOT parameters to specify a drive cycle for performance testing.
- Workspace variable Specify time, speed, and, optionally, gear data as a structure, 2-D array, or time series object.
- .mat, .xls, .xlsx or .txt file Specify a file that contains time, speed and, optionally, gear data in column format.

Once you have installed additional cycles, you can use set\_param to set the drive cycle. For example, to use drive cycle US06:

```
set_param([gcs '/Drive Cycle Source'],'cycleVar','US06')
```

### Dependencies

The table summarizes the parameter dependencies.

| Drive Cycle Source        | Enables Parameter                                                           |
|---------------------------|-----------------------------------------------------------------------------|
| Wide Open Throttle (WOT)  | Start time, t_wot1                                                          |
|                           | Initial reference speed, xdot_woto                                          |
|                           | Nominal reference speed, xdot_wot1                                          |
|                           | Time to start deceleration, wot2                                            |
|                           | Final reference speed, xdot_wot2                                            |
|                           | WOT simulation time, t_wotend                                               |
|                           | Source velocity units                                                       |
| Workspace variable        | From workspace                                                              |
|                           | Source velocity units                                                       |
|                           | <b>Output gear shift data</b> , if drive cycle includes gear shift schedule |
| .mat, .xls, .xlsx or .txt | Drive cycle source file                                                     |
| file                      | Source velocity units                                                       |
|                           | <b>Output gear shift data</b> , if drive cycle includes gear shift schedule |

### From workspace - Workspace

variable

Monotonically increasing time, velocity, and, optionally, gear data, specified by a structure, 2-D array, or time series object. Enter units for velocity in the **Source velocity units** parameter field.

A valid point must exist for each corresponding time value. You cannot specify inf, empty, or NaN.



| Workspace Variable                                                                                                                        | Source<br>Velocity<br>Unit              | Drive Cycle Plot                       |     |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-----|
| <pre>2-D array without a gear shift schedule t = 0:1:100; xdot = 5.*sin(t)+5; myCycleA = [t',xdot'];</pre>                                | mph                                     | Custom Data Set1 (mph)                 |     |
|                                                                                                                                           |                                         | 0 20 40 60 80<br>Time (seconds)        | 100 |
| 2-D array with a gear shift<br>schedule<br>gears=[0, 1, 2, 3, 4, 4,<br>t=0:1:10;<br>xdot=[0,5,10,15,20,25,30,<br>myCycleA=[t',xdot',gears | mph<br>4, 5, 5, 5,<br>40,50,60,60<br>]; | 60<br>50<br>50<br>10<br>10<br>10<br>10 |     |
|                                                                                                                                           |                                         | 0 2 4 6 8<br>Time (seconds)            | 10  |



To enable this parameter, select Workspace variable from Drive cycle source.

#### Drive cycle source file — File name

.mat, .xls, .xlsx or .txt

File containing monotonically increasing time, velocity, and, optionally, gear in column or comma-separated format. The block ignores units in the file. Enter units for velocity in the **Source velocity units** parameter field.

| File                                                                                                                                                                                                   | Source<br>Velocity<br>Unit | Drive Cycle Plot                                                                                                         |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------|---|
| An .xls or .xlsx file with<br>time in column A and<br>velocity in column B.<br>A B<br>1 0 0<br>2 0.5 0<br>3 1 0<br>4 1.5 0<br>5 2 1<br>6 2.5 5<br>7 3 10<br>8 3.5 20<br>9 4 30<br>10 4.5 40<br>11 5 50 | m/s                        | 50<br>Crestom Data Set1 (m/s)<br>00<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 5 |
|                                                                                                                                                                                                        |                            | lime (seconds)                                                                                                           |   |

| Fil            | e                                                                                                     |                                                                                                            |                                                                         | Source<br>Velocity<br>Unit | Dri                   | ve                         | Cycle Plot        |   |
|----------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------|-----------------------|----------------------------|-------------------|---|
| An tim col col | .xls or<br>he in col<br>umn B,<br>umn C.<br>Ignores<br>file.<br>Conver<br>informa<br>• N to<br>• D to | xlsx f<br>umn A,<br>and gea<br>The bloc<br>the uni<br>ts the uni<br>ts the ge<br>ation to a<br>0<br>2<br>B | ile with<br>velocity in<br>r in<br>ck:<br>ts in the<br>ear<br>integers: | mph                        | Custom Data Set (mph) | 50<br>40<br>30<br>20<br>10 |                   |   |
| 2              | 0                                                                                                     | 0                                                                                                          | N                                                                       |                            |                       | 0                          | 0 2 4 6           | 8 |
| 3              | 0.5                                                                                                   | 0                                                                                                          | N                                                                       |                            |                       |                            | Time (seconds)    | - |
| 4              | 1                                                                                                     | 0                                                                                                          | N                                                                       |                            |                       |                            | 11110 (00 001100) |   |
| 5              | 2.5                                                                                                   | 1                                                                                                          | D                                                                       |                            |                       |                            |                   |   |
| 7              | 2.5                                                                                                   | 5                                                                                                          | D                                                                       |                            |                       |                            |                   |   |
| 8              | 3                                                                                                     | 10                                                                                                         | D                                                                       |                            |                       |                            |                   |   |
| 9              | 3.5                                                                                                   | 20                                                                                                         | D                                                                       |                            |                       |                            |                   |   |
| 10             | 4                                                                                                     | 30                                                                                                         | D                                                                       |                            |                       |                            |                   |   |
| 11             | 4.5                                                                                                   | 40                                                                                                         | D                                                                       |                            |                       |                            |                   |   |
| 12             | 5                                                                                                     | 50                                                                                                         | D                                                                       |                            |                       |                            |                   |   |

| File                                                                                                                                                                                                                              |                                                  | Source<br>Velocity<br>Unit | Drive                                                                         | Cycle Plot |          |                |           |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------|-------------------------------------------------------------------------------|------------|----------|----------------|-----------|----|
| A.txt with tin<br>1 and velocity<br>The block ignor-<br>header and un-<br>information.<br>Time Speed<br>s km/h<br>0 0<br>1 0<br>2 0<br>3 0<br>4 0<br>5 0<br>6 0<br>7 0<br>8 0<br>9 0                                              | me in column<br>in column 2.<br>ores the<br>hits | km/h                       | Custom Data Set1 (km/h)<br>Custom Data Set1 (km/h)<br>Custom Data Set1 (km/h) | -          |          |                |           |    |
| 9       0         10       0         11       0         12       0         13       5         14       10         15       15         16       20         17       20         18       23         19       26         20       30 |                                                  |                            | 0                                                                             | )          | 5<br>Tim | 10<br>e (secon | 15<br>ds) | 20 |

If you provide the gear schedule using P, R, N, D, L, OD, the block maps the gears to integers.

| Gear | Integer |
|------|---------|
| Р    | 80      |
| R    | -1      |
| N    | Θ       |
| L    | 1       |
| D    | 2       |

| Gear | Integer                                    |
|------|--------------------------------------------|
| OD   | Next integer after highest specified gear. |

For example, the block converts the gear schedule P P N L D 3 4 5 6 5 4 5 6 7 0D 7 to 80 80 0 1 2 3 4 5 6 5 4 5 6 7 8 7.

#### Dependencies

To enable this parameter, select .mat, .xls, .xlsx or .txt file from **Drive cycle** source.

### Repeat cyclically — Repeat drive cycle

off (default)

Repeat the drive cycle if the simulation run time exceeds the length of the drive cycle.

### **Output acceleration — Output the acceleration**

off (default)

To calculate the acceleration, the block implements Savitzky-Golay differentiation using a second-order polynomial with a three-sample point filter.

#### Dependencies

To create the output acceleration port, select **Output acceleration**. Selecting **Output acceleration** enables the **Output acceleration units** parameter.

**Output gear shift data — Output the gear** off (default)

### Dependencies

- Specify a drive cycle that contains a gear shift schedule. You can use:
  - A support package to install standard drive cycles that include the gear shift schedules, for example JC08 and CUEDC.
  - Workspace variables.
  - .mat, .xls, .xlsx, or .txt files.
- Clicking this parameter creates input port **Gear**.

#### woт

### Start time, t\_wot1 - Drive cycle start time

scalar

Drive cycle start time, in s. For example, this plot shows a drive cycle with a start time of  $10\ \text{s}.$ 



#### Dependencies

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

### Initial reference speed, xdot\_woto - Speed

scalar

Initial reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with an initial reference speed of 4 m/s.



To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

### Nominal reference speed, xdot\_wot1 - Speed

scalar

Nominal reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with a nominal reference speed of 30 m/s.



To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

### Time to start deceleration, wot2 — Time

scalar

Time to start vehicle deceleration, in s. For example, this plot shows a drive cycle with vehicle deceleration starting at 25 s.


To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

## Final reference speed, xdot\_wot2 - Speed

scalar

Final reference speed, in units that you specify with the **Source velocity units** parameter. For example, this plot shows a drive cycle with a final reference speed of 2 m/s.



To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

## WOT simulation time, t\_wotend — Time

scalar

Drive cycle WOT simulation time, in s. For example, this plot shows a drive cycle with a simulation time of 50 s.



To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT).

#### **Units and Sample Period**

## Source velocity units — Specify velocity units

m/s (default)

Input velocity units.

#### Dependencies

To enable this parameter, select the **Drive cycle source** parameter Wide Open Throttle (WOT), Workspace variable, or .mat, .xls, .xlsx or .txt file.

### Output velocity units - Specify velocity units

m/s (default)

Output velocity units.

### Output acceleration units — Specify acceleration units

m/s^2 (default)

Specify the output acceleration units.

### Dependencies

To enable this parameter, select **Output acceleration**.

**Output sample period (0) for continuous — Sample rate** scalar

Sample rate. Set to  $\boldsymbol{\Theta}$  for continuous sample period. For a discrete period, specify a non-zero rate.

## See Also

Longitudinal Driver

## **Topics**

"Time Series Objects" (MATLAB)

### Introduced in R2017a

# **Longitudinal Driver**

Longitudinal speed-tracking controller Library: Vehicle Scenario Builder



## Description

The Longitudinal Driver block implements a longitudinal speed-tracking controller. Based on reference and feedback velocities, the block generates normalized acceleration and braking commands that can vary from 0 through 1. You can use the block to model the dynamic response of a driver or to generate the commands necessary to track a longitudinal drive cycle.

## Longitudinal Speed-Tracking Controller

The Longitudinal Driver block implements a Proportional-Integral (PI) controller with tracking anti-windup and feed-forward gains. You can specify parameters to account for road grade loads and feedback error filtering.

The block uses these equations to calculate the speed control output:

$$y = \frac{K_{ff}}{v_{nom}} + \frac{K_p e_{ref}}{v_{nom}} + \left(\frac{K_i}{v_{nom}} + K_{aw} e_{out}\right) \int e_{ref} dt + K_g \theta$$

where:

$$e_{ref} = v_{ref} - v$$
  
 $e_{out} = y_{sat} - y$ 

$$y_{sat} = \begin{cases} -1 & y < -1 \\ y & -1 \le y \le 1 \\ 1 & 1 < y \end{cases}$$

The velocity error low-pass filter uses this transfer function:

$$H(s) = \frac{1}{\tau_{err}s + 1} \quad \text{for} \quad \tau_{err} > 0$$

To calculate the acceleration and braking commands, the block uses these equations.

$$y_{acc} = \begin{cases} 0 & y_{sat} < 0 \\ y_{sat} & 0 \le y_{sat} \le 1 \\ 1 & 1 < y_{sat} \end{cases}$$
$$y_{dec} = \begin{cases} 0 & y_{sat} > 0 \\ -y_{sat} & -1 \le y_{sat} \le 0 \\ 1 & y_{sat} < -1 \end{cases}$$

The equations use these variables.

| <i>v<sub>nom</sub></i>  | Nominal vehicle speed                                    |
|-------------------------|----------------------------------------------------------|
| $K_p$                   | Proportional gain                                        |
| $K_i$                   | Integral gain                                            |
| K <sub>aw</sub>         | Anti-windup gain                                         |
| $K_{ff}$                | Velocity feed-forward gain                               |
| $K_g$                   | Grade feed-forward gain                                  |
| θ                       | Grade angle                                              |
| τ <sub>err</sub>        | Error filter time constant                               |
| У                       | Nominal control output magnitude                         |
| <b>y</b> <sub>sat</sub> | Saturated control output magnitude                       |
| e <sub>ref</sub>        | Velocity error                                           |
| e <sub>out</sub>        | Difference between saturated and nominal control outputs |
| <b>Y</b> <sub>acc</sub> | Acceleration signal                                      |
| Ydec                    | Breaking signal                                          |
| ν                       | Velocity feedback signal                                 |

*v<sub>ref</sub>* Reference velocity signal

## Ports

## Input

VelRef — Reference vehicle velocity scalar

Reference velocity,  $v_{ref}$ , in m/s.

VelFdbk — Forward vehicle velocity scalar

Forward vehicle velocity, in m/s.

# **Grade** — **Road grade angle** scalar

Road grade angle,  $\theta$ , in deg.

## Output

## Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal | Variable         | Description                                                    |
|--------|------------------|----------------------------------------------------------------|
| Accel  | <i>Y</i> acc     | Commanded vehicle acceleration,<br>normalized from 0 through 1 |
| Decel  | Ydec             | Commanded vehicle deceleration,<br>normalized from 0 through 1 |
| Err    | e <sub>ref</sub> | Difference in reference vehicle<br>speed and vehicle speed     |

| Signal    | Variable                      | Description                     |
|-----------|-------------------------------|---------------------------------|
| ErrSqrSum |                               | Integrated square of error      |
|           | $\int_{1}^{t} e_{ref}^{2} dt$ |                                 |
| ErrMax    | $\max(e_{ref}(t))$            | Maximum error during simulation |
| ErrMin    | $\min(e_{ref}(t))$            | Minimum error during simulation |

### AccelCmd — Commanded vehicle acceleration

scalar

Commanded vehicle acceleration,  $y_{acc}$ , normalized from 0 through 1.

### DecelCmd — Commanded vehicle deceleration

scalar

Commanded vehicle deceleration,  $y_{dec}$ , normalized from 0 through 1.

## **Parameters**

#### Longitudinal Tracking

Nominal speed, vnom — Nominal vehicle speed scalar

Nominal vehicle speed,  $v_{nom}$ , in m/s. The block uses the nominal speed to normalize the controller gains.

Proportional gain, Kp — Gain
scalar

Proportional gain,  $K_p$ .

**Integral gain, Ki — Gain** scalar

Proportional gain, *K*<sub>i</sub>.

**Anti-windup, Kaw — Gain** scalar

Anti-windup gain,  $K_{aw}$ .

Velocity feed-forward, Kff — Gain

scalar

Velocity feed-forward gain,  $K_{ff}$ .

**Grade feed-forward, Kg — Gain** scalar

Grade feed-forward gain,  $K_q$ .

Error filter time constant, tauerr - Filter
scalar

Error filter time constant,  $\tau_{err}$ , in s. To disable the filter, enter 0.

## See Also

Drive Cycle Source | Vehicle Body Total Road Load

## Introduced in R2017a

# **Transmission Blocks — Alphabetical** List

# **Automated Manual Transmission**

Ideal automated manual transmission Library: Transmission / Transmission Systems



## Description

The Automated Manual Transmission block implements an ideal automated transmission (AMT). An AMT is a manual transmission with additional actuators and an electronic control unit (ECU) to regulate clutch and gear selection based on commands from a controller. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable.

Use the block for:

- Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Automated Manual Transmission block calculates:

- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

| Setting   | Block Implementation                                                         |
|-----------|------------------------------------------------------------------------------|
| Gear only | Efficiency determined from a 1D lookup table that is a function of the gear. |

| Setting                                                | Block Implementation                                                                                                                     |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Gear, input torque,<br>input speed, and<br>temperature | Efficiency determined from a 4D lookup table that is a<br>function of:<br>• Gear<br>• Input torque<br>• Input speed<br>• Oil temperature |

## **Clutch Control**

The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select **Control type** parameter Ideal integrated controller, the block generates idealized clutch pressure signals. To use your own clutch control signals, select **Control type** parameter External control.

## **Clutch Lock-Up and Clutch Friction**

Based on the clutch lock-up condition, the block implements one of these friction models.

| lf                                                      | Clutch<br>Condition | Friction Model                                                                                                                                       |
|---------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | Unlocked            |                                                                                                                                                      |
| $\omega_i \neq N\omega_d$                               |                     |                                                                                                                                                      |
| or                                                      |                     |                                                                                                                                                      |
| $\left T_{S} < \left T_{f} - Nw_{i}b_{i}\right \right $ |                     | $T_f = T_k$                                                                                                                                          |
|                                                         |                     | where,                                                                                                                                               |
|                                                         |                     | $T_k = F_c R_{eff} \mu_k \tanh \left[ 4 \left( \frac{w_i}{N} - w_d \right) \right]$                                                                  |
|                                                         | Locked              | $T_{f} = T_{s} \qquad \qquad$ |
| $\omega_i = N \omega_t$                                 |                     | $R_{off} = \frac{2(R_o^3 - R_i^3)}{2}$                                                                                                               |
| and                                                     |                     | $3(R_o^2 - R_i^2)$                                                                                                                                   |

 $T_{\rm S} \ge \left| T_f - N b_i \omega_i \right|$ 

The equations use these variables.

| $\omega_t$     | Output drive shaft speed        |
|----------------|---------------------------------|
| $\omega_i$     | Input drive shaft speed         |
| $\omega_d$     | Drive shaft speed               |
| $b_i$          | Viscous damping                 |
| $F_c$          | Applied clutch force            |
| Ν              | Engaged gear                    |
| $T_{f}$        | Frictional torque               |
| $T_k$          | Kinetic frictional torque       |
| $T_s$          | Static frictional torque        |
| $R_{ m eff}$   | Effective clutch radius         |
| R <sub>o</sub> | Annular disk outer radius       |
| $R_i$          | Annular disk inner radius       |
| $\mu_s$        | Coefficient of static friction  |
| $\mu_k$        | Coefficient of kinetic friction |

## **Locked Rotational Dynamics**

To model the rotational dynamics when the clutch is locked, the block implements these equations.

$$\dot{\omega}_d J_N = \eta_N T_d - \frac{\omega_i}{N} b_N + N T_i$$
$$\omega_i = N \omega_d$$

The block determines the input torque,  $T_i$ , through differentiation.

The equations use these variables.

| $\omega_i$ | Input drive shaft speed      |
|------------|------------------------------|
| $\omega_d$ | Drive shaft speed            |
| Ν          | Engaged gear                 |
| $b_N$      | Engaged gear viscous damping |
| $J_N$      | Engaged gear inertia         |
| $\eta_N$   | Engaged gear efficiency      |
| $T_d$      | Drive shaft torque           |
| $T_i$      | Applied input torque         |
|            |                              |

## **Unlocked Rotational Dynamics**

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.

$$\dot{\omega}_d J_N = NT_f - \omega_d b_N + T_d$$

where:

| $\omega_d$ | Drive shaft speed            |
|------------|------------------------------|
| N          | Engaged gear                 |
| $b_N$      | Engaged gear viscous damping |
| $J_N$      | Engaged gear inertia         |
| $T_d$      | Drive shaft torque           |
| $T_i$      | Applied input torque         |

## Ports

## Input

# **Gear — Gear number to engage** scalar

Integer value of gear number to engage.

### CltchCmd — Clutch command

scalar

Clutch pressure command.

#### Dependencies

To create this port, select **Control type** parameter External control.

### EngTrq — Applied input torque

scalar

Applied input torque,  $T_i$ , typically from the engine crankshaft or dual mass flywheel damper, in N.m.

### DiffTrq — Applied load torque

scalar

Applied load torque,  $T_d$ , typically from the differential or driveshaft, in N.m.

### Temp — Oil temperature

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- Input torque
- Input speed
- Oil temperature

#### Dependencies

To create this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

## Output

## Info — Bus signal

bus

Bus signal contains these block calculations.

| Signal |               | Description                             | Variable       | Units |
|--------|---------------|-----------------------------------------|----------------|-------|
| Eng    | EngTrq        | Input applied torque                    | T <sub>i</sub> | N.m   |
|        | EngSpd        | Input drive shaft speed                 | $\omega_i$     | rad/s |
| Diff   | DiffTrq       | Output drive shaft<br>torque            | T <sub>t</sub> | N.m   |
|        | DiffSpd       | Output drive shaft<br>speed             | $\omega_t$     | rad/s |
| Cltch  | CltchForce    | Applied clutch force                    | F <sub>c</sub> | N     |
|        | CltchLocked   | Clutch lock status,<br>Boolean:         | N/A            | N/A   |
|        |               | • Locked – 0                            |                |       |
|        |               | • Unlocked — 1                          |                |       |
| Trans  | TransSpdRatio | Speed ratio at time t                   | $\phi(t)$      | N/A   |
|        | TransEta      | Ratio of output power<br>to input power | η              | N/A   |
|        | TransGearCmd  | Commanded gear                          | $N_{cmd}$      | N/A   |
|        | TransGear     | Engaged gear                            | N              | N/A   |

## EngSpd — Angular speed

scalar

Applied drive shaft angular speed input,  $\omega_i$ , in rad/s.

## DiffSpd — Angular speed

scalar

Drive shaft angular speed output,  $\omega_d$ , in rad/s.

## **Parameters**

## Control type — Specify control type

Ideal integrated controller (default) | External control

The AMT delivers drive shaft torque continuously by controlling the pressure signals from the clutch. If you select **Control type** parameter Ideal integrated controller, the

block generates idealized clutch pressure signals. To use your own clutch control signals, select **Control type** parameter External control.

### Dependencies

This table summarizes the port configurations.

| Control Mode     | Creates Ports |
|------------------|---------------|
| External control | CltchCmd      |

### Efficiency factors — Specify efficiency calculation

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

| Setting                                                | Block Implementation                                                          |
|--------------------------------------------------------|-------------------------------------------------------------------------------|
| Gear only                                              | Efficiency determined from a 1D lookup table that is a function of the gear.  |
| Gear, input torque,<br>input speed, and<br>temperature | Efficiency determined from a 4D lookup table that is a function of:<br>• Gear |
|                                                        | • Input torque                                                                |
|                                                        | • Input speed                                                                 |
|                                                        | Oil temperature                                                               |

#### Dependencies

| Setting Parameter To         | Enables                                       |
|------------------------------|-----------------------------------------------|
| Gear only                    | Efficiency vector, eta                        |
| Gear, input torque,          | Efficiency torque breakpoints, Trq_bpts       |
| input speed, and temperature | Efficiency speed breakpoints, omega_bpts      |
|                              | Efficiency temperature breakpoints, Temp_bpts |
|                              | Efficiency lookup table, eta_tbl              |

### Transmission

## Input shaft inertia, Jin — Inertia

scalar

Input shaft inertia, in kg\*m^2.

## Input shaft damping, bin — Damping

scalar

Input shaft damping, in N.m\*s/rad.

## Initial input velocity, omegain\_o - Angular velocity

scalar

Angular velocity, in rad/s.

# Gear number vector, G — Specify number of transmission speeds vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is 0. For example, you can set these parameter values.

| To Specify                                                 | Set Gear number, G To |
|------------------------------------------------------------|-----------------------|
| Four transmission speeds, including neutral                | [0,1,2,3,4]           |
| Three transmission speeds, including neutral and reverse   | [-1,0,1,2,3]          |
| Five transmission speeds,<br>including neutral and reverse | [-1,0,1,2,3,4,5]      |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

# Efficiency torque breakpoints, Trq\_bpts — Breakpoints vector

Torque breakpoints for efficiency table, in  $N \cdot m$ .

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

# Efficiency speed breakpoints, omega\_bpts — Breakpoints vector

Speed breakpoints for efficiency table, rad/s.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

# Efficiency temperature breakpoints, Temp\_bpts - Breakpoints vector

Temperature breakpoints for efficiency table, in K.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

# Gear ratio vector, N — Ratio of input speed to output speed vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

| To Specify Gear Ratios<br>For                                 | Set Gear number, G<br>To | Set Gear ratio, N To               |
|---------------------------------------------------------------|--------------------------|------------------------------------|
| Four transmission speeds, including neutral                   | [0,1,2,3,4]              | [1,4.47,2.47,1.47,1]               |
| Five transmission speeds,<br>including neutral and<br>reverse | [-1,0,1,2,3,4,5]         | [-4.47,1,4.47,2.47,1.47,1,0<br>.8] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

# Transmission inertia vector, Jout — Gear rotational inertia vector

Vector of gear rotational inertias, with indices corresponding to the inertias specified in **Gear number, G**, in kg\*m^2. For example, you can set these parameter values.

| To Specify Inertia For                                      | Set Gear number, G<br>To | Set Inertia, J To                         |
|-------------------------------------------------------------|--------------------------|-------------------------------------------|
| Four gears, including neutral                               | [0,1,2,3,4]              | [0.01,2.28,2.04,0.32,0.028]               |
| Inertia for five gears,<br>including reverse and<br>neutral | [-1,0,1,2,3,4,5]         | [2.28,0.01,2.28,2.04,0.32,0<br>.028,0.01] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

# Transmission damping vector, bout — Gear viscous damping coefficient vector

Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in **Gear number, G**, in N.m\*s/rad. For example, you can set these parameter values.

| To Specify Damping For                    | Set Gear number, G<br>To | Set Damping, b To                                |
|-------------------------------------------|--------------------------|--------------------------------------------------|
| Four gears, including<br>neutral          | [0,1,2,3,4]              | [0.001,0.003,0.0025,<br>0.002,0.001]             |
| Five gears, including reverse and neutral | [-1,0,1,2,3,4,5]         | [0.003,0.001,0.003,<br>0.0025,0.002,0.001,0.001] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

# Efficiency vector, eta — Gear efficiency vector

Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

| To Specify Efficiency For                 | Set Gear number, G<br>To | Set Efficiency, eta To              |
|-------------------------------------------|--------------------------|-------------------------------------|
| Four gears, including neutral             | [0,1,2,3,4]              | [0.9,0.9,0.9,0.9,0.95]              |
| Five gears, including reverse and neutral | [-1,0,1,2,3,4,5]         | [0.9,0.9,0.9,<br>0.9,0.9,0.95,0.95] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Transmission damping vector**, and **Efficiency vector** parameters must be equal.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear only.

## Efficiency lookup table, eta\_tbl — Gear efficiency

array

Table of gear mechanical efficiency,  $\eta_N$  as a function of gear, input torque, input speed, and temperature.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

## Initial output velocity, omega\_o — Transmission

scalar

Transmission initial output rotational velocity,  $\omega_{to}$ , in rad/s. If you select **Clutch initially locked**, the block ignores the **Initial output velocity**, **omega\_o** parameter value.

```
Initial gear, G_o — Engaged gear
scalar
```

Initial gear to engage,  $G_o$ .

### **Clutch and Synchronizer**

```
Clutch pressure time constant, tauc — Time scalar
```

Time required to engage and disengage the clutch during shift events,  $t_{c}$ , in s.

# Sychronization time, ts — Time scalar

Time required for gear selection and synchronization,  $t_s$ , in s.

# Clutch time, tc — Time scalar

Time required to engage and disengage the clutch during shift events,  $t_c$ , in s.

### Dependencies

To create this parameter, select **Control type** parameter Ideal integrated controller.

## Effective clutch radius, R — Radius

scalar

The effective radius,  $R_{e\!f\!f}$  , used with the applied clutch friction force to determine the friction force, in m. The effective radius is defined as:

$$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$$

The equation uses these variables.

Annular disk outer radius  $R_{o}$ 

Annular disk inner radius

# Clutch force gain, K\_c - Force scalar

Open loop lock-up clutch gain,  $K_c$ , in N.

# **Clutch static friction coefficient, mus — Coefficient** scalar

Dimensionless clutch disc coefficient of static friction,  $\mu_s$ .

# Clutch kinematic friction coefficient, muk - Coefficient scalar

Dimensionless clutch disc coefficient of kinetic friction,  $\mu_k$ .

**Clutch initially locked** — **Select to initially lock clutch** off (default)

Select to lock clutch initially.

### Dependencies

To create this parameter, select **Control type** parameter Ideal integrated controller.

**Synchronizer initially locked — Select to initially lock synchronizer** off (default)

Select to initially lock synchronizer.

## See Also

AMT Controller | Continuously Variable Transmission | Dual Clutch Transmission | Ideal Fixed Gear Transmission

## Introduced in R2017a

# **AMT Controller**

Automated manual transmission controller with clutch open, close, and synchronization timing

Library: Transmission / Transmission Controllers



## Description

The AMT Controller block implements an automated manual transmission (AMT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

## Ports

## Inputs

**GearReq — Gear number to engage** scalar

Gear number request,  $G_{req}$ .

## Output

Info — Bus signal bus

Bus signal containing these block calculations.

| Signal   | Description                                           | Variable         |
|----------|-------------------------------------------------------|------------------|
| GearReq  | Gear number request                                   | G <sub>req</sub> |
| GearEngd | Nominal gear commanded by the controller              | G <sub>o</sub>   |
| Cltch    | Clutch pressure command for gears, between 0<br>and 1 | NA               |

### GearEffct — Effective gear for shifting

scalar

Effective gear for shifting. The block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

### Cltch — Command for clutch pressure

scalar

Clutch pressure command, between 0 and 1.

## **Parameters**

## Initial gear, G\_o — Engaged gear

scalar

Initial gear to engage,  $G_o$ .

# Clutch actuation time, tc - Time scalar

Time required to engage and disengage the clutch during shift events,  $t_c$ , in s.

Synchronizer time, ts — Time scalar

Time required for gear selection and synchronization,  $t_s$ , in s.

Sample period, dt — Time
scalar

Sample period, *dt*, in s.

# **Clutch initially locked — Select to initially lock clutch** off (default)

Selecting this parameter initially locks the clutch.

**Synchronizer initially locked — Select to initially lock synchronizer** off (default)

Selecting this parameter initially locks the synchronizer.

## See Also

Automated Manual Transmission

### Introduced in R2017a

# **Continuously Variable Transmission**

Push belt continuously variable transmission with independent radii control Library: Transmission / Transmission Systems



## Description

The Continuously Variable Transmission block implements a push belt continuously variable transmission (CVT) with independent radii control. Use the block for control system design, powertrain matching, and fuel economy studies. You can configure the block for internal or external control:

- Internal Input direction and pulley ratio requests
- External Input direction and pulley displacement requests

The table summarizes the pulley kinematic, speed reduction, and dynamic calculations made by the Continuously Variable Transmission block.

| Calculation                                                    | Pulley<br>Kinematics | Reverse and<br>Final Speed<br>Reduction | Dynamics     |
|----------------------------------------------------------------|----------------------|-----------------------------------------|--------------|
| Final angular speed ratio                                      | $\checkmark$         | $\checkmark$                            | $\checkmark$ |
| Belt torque applied to the<br>secondary and primary<br>pulleys |                      |                                         | V            |
| Torque applied to the<br>secondary and primary<br>pulleys      |                      | ~                                       |              |
| Angular velocity of<br>secondary and primary<br>pulleys        | V                    | $\checkmark$                            | √            |

| Calculation                                   | Pulley<br>Kinematics | Reverse and<br>Final Speed<br>Reduction | Dynamics     |
|-----------------------------------------------|----------------------|-----------------------------------------|--------------|
| Belt and pulley geometry                      | $\checkmark$         |                                         |              |
| Belt linear speed                             |                      |                                         | $\checkmark$ |
| Wrap angle on secondary<br>and primary pulley | $\checkmark$         |                                         |              |
| Primary and secondary pulley radii            | $\checkmark$         |                                         |              |

The figure shows the CVT variator with two configurations. In the first configuration, which illustrates speed reduction, the variator is set to decrease the primary pulley radius and increase the secondary pulley radius. In the second configuration, which illustrates overdrive, the variator is set to increase the primary pulley radius and decrease the secondary pulley radius.



## **Pulley Kinematics**

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.



$$\begin{split} &L_{0} = f\left(rp_{max}, rs_{max}, rp_{min}, rs_{min}, C_{dist}\right) \\ ∶_{command} = f\left(ratio_{request}, ratio_{max}, ratio_{min}\right) \\ &r_{pri} = f\left(r_{0}, ratio_{command}, C_{dist}\right) \\ &r_{sec} = f\left(r_{0}, ratio_{command}, C_{dist}\right) \\ &x_{pri} = f\left(r_{0}, r_{pri}, \theta_{wedge}\right) \\ &x_{sec} = f\left(r_{0}, r_{sec}, \theta_{wedge}\right) \end{split}$$

The equations use these variables.

| ratio <sub>request</sub> | Pulley gear ratio request                                                          |
|--------------------------|------------------------------------------------------------------------------------|
| ratio <sub>command</sub> | Pulley gear ratio command, based on request and physical limitations               |
| r <sub>gap</sub>         | Gap distance between variator pulleys                                              |
| $C_{dist}$               | Distance between variator pulley centers                                           |
| <i>rp<sub>max</sub></i>  | Maximum variator primary pulley radius                                             |
| rs <sub>max</sub>        | Maximum variator secondary pulley radius                                           |
| $rp_{min}$               | Minimum variator primary pulley radius                                             |
| rs <sub>min</sub>        | Minimum variator secondary pulley radius                                           |
| r <sub>o</sub>           | Initial pulley radii with gear ratio of 1                                          |
| $L_o$                    | Initial belt length, resulting from variator specification                         |
| x <sub>pri</sub>         | Variator primary pulley displacement, resulting from controller request            |
| X <sub>sec</sub>         | $Variator\ secondary\ pulley\ displacement,\ resulting\ from\ controller\ request$ |
| r <sub>pri</sub>         | Variator primary pulley radius, resulting from controller request                  |
| r <sub>sec</sub>         | Variator secondary pulley radius, resulting from controller request                |
| $\Theta_{wedge}$         | Variator wedge angle                                                               |
| $\Phi$                   | Angle of belt to pulley contact point                                              |
| L                        | Belt length, resulting from variator position                                      |

## **Reverse and Final Speed Reduction**

The CVT input shaft connects to a planetary gear set that drives the primary pulley. The shift direction determines the input gear inertia, efficiency, and gear ratio. The shift direction is the filtered commanded direction:

$$\frac{Dir_{shift}}{Dir}(s) = \frac{1}{\tau_s s + 1}$$

For forward motion (  $Dir_{shift} = 1$  ):

$$N_{i} = 1$$
$$\eta_{i} = \eta_{fwd}$$
$$J_{i} = J_{fwd}$$

For reverse motion (  $Dir_{shift} = -1$  ):

$$N_{i} = -N_{rev}$$
$$\eta_{i} = \eta_{rev}$$
$$J_{i} = J_{rev}$$

The gear ratio and efficiency determine the input drive shaft speed and torque applied to the primary pulley:

$$T_{app\_pri} = \eta_i N_i T_i$$

The block reduces the secondary pulley speed and applied torque using a fixed gear ratio.

$$T_{app\_sec} = \frac{T_o}{\eta_o N_o}$$
$$\omega_o = \frac{\omega_{sec}}{N_o}$$

The final gear ratio, without slip, is given by:

$$N_{final} = \frac{\omega_i}{\omega_o} = N_i N_o \frac{r_{sec}}{r_{pri}}$$

The equations use these variables.

| Input planetary gear ratio                                           |
|----------------------------------------------------------------------|
| CVT direction command                                                |
| Direction used to determine planetary inertia, efficiency, and ratio |
| Direction shift time constant                                        |
| Forward and reverse gear efficiency, respectively                    |
| Forward and reverse gear inertia, respectively                       |
| Reverse gear ratio                                                   |
| Torque applied to primary and secondary pulleys, respectively        |
|                                                                      |

| $T_i$                           | Input drive shaft torque                         |
|---------------------------------|--------------------------------------------------|
| $\omega_i,  \omega_o$           | Input and output drive shaft speed, respectively |
| $\omega_{pri}$ , $\omega_{sec}$ | Primary and secondary pulley speed, respectively |
| N <sub>final</sub>              | Total no-slip gear ratio                         |

## **Dynamics**

The maximum torque that the CVT can transmit depends on the friction between the pulleys and belt. According to *Prediction of Friction Drive Limit of Metal V-Belt*, the torque friction is defined as:

$$T_{fric}(r_p,\mu) = \frac{2\mu F_{ax}r_p}{\cos(\vartheta_{wedge})}$$

Without macro slip, the tangential acceleration of the pulley is assumed to be equal to the belt acceleration. Once the torque reaches the static friction limit, the belt begins to slip, and the pulley and belt acceleration are independent. During slip, the torque transmitted by the belt is a function of the kinetic friction factor. During the transition from slip to non-slip conditions, the belt and tangential pulley velocities are equal.

The block implements these equations for four different slip conditions.

| Condition                                              | Equations                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Belt slips on both<br>secondary and primary<br>pulleys | $\begin{split} (J_{pri} + J_i)\dot{\omega}_{pri} &= T_{app\_pri} \cdot T_{BoP\_pri} \cdot b_{pri}\omega_{pri} \\ J_{sec}\dot{\omega}_{sec} &= T_{app\_sec} \cdot T_{BoP\_sec} \cdot b_{sec}\omega_{sec} \\ m_b\dot{v}_b &= \frac{T_{BoP\_pri}}{r_{pri}} + \frac{T_{BoP\_sec}}{r_{sec}} \cdot b_bv_b \\ r_{pri}\omega_{pri} &\neq v_b \\ r_{sec}\omega_{sec} &\neq v_b \end{split}$ |

| Condition                             | Equations                                                                                                                                                                                                     |                              |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Belt slips on only the primary pulley | $(J_{pri} + J_i)\dot{\omega}_{pri} = T_{app_pri} - T_{BoP_pri} - b_{pri}\omega_{pri}$ $\begin{pmatrix} J_{sec} \\ \vdots \\ $ |                              |
|                                       | $\binom{m_b + \frac{\omega}{r_{sec}^2}}{r_{sec}} v_b = \frac{\omega}{r_{pri}} + \frac{\omega}{r_{sec}} \cdot \left( v_b + \frac{\omega}{r_{sec}^2} \right) v_b$ $\omega = \frac{v_b}{r_{sec}^2}$              |                              |
|                                       | $ \begin{aligned} \omega_{sec} &= r_{sec} \\ r_{pri}\omega_{pri} \neq v_b \end{aligned} $                                                                                                                     |                              |
|                                       | $\begin{aligned} T_{BoP\_pri} &= \operatorname{sgn}(r_{pri}\omega_{pri} - v_b)T_{fric}(r_{pri}, \mu_{kin}) \\  T_{BoP\_pri}  &< T_{fric}(r_{pri}, \mu_{ctatia}) \end{aligned}$                                |                              |
| Belt slips on only the                |                                                                                                                                                                                                               |                              |
| secondary pulley                      | $(m_b + \frac{J_{pri} + J_i}{r_{pri}^2})\dot{v}_b = \frac{T_{app\_pri}}{r_{pri}} + \frac{T_{BoP\_sec}}{r_{sec}} - \left(b_b + \frac{b_{pri}}{r_{pri}^2}\right)v_b$                                            |                              |
|                                       | $J_{sec}\dot{\omega}_b = T_{app\_sec} + T_{BoP\_sec} - b_{sec}\omega_{sec}$                                                                                                                                   |                              |
|                                       | $\omega_{pri} = \frac{v_b}{r_{pri}}$                                                                                                                                                                          |                              |
|                                       | $\begin{aligned} r_{sec}\omega_{sec} \neq v_b \\ T_{BoP-sec} = \operatorname{sgn}(r_{sec}\omega_{sec} - v_b)T_{fric}(r_{sec}, \mu_{bin}) \end{aligned}$                                                       |                              |
|                                       | $\left  T_{BoP\_pri} \right  < T_{fric} (r_{pri}, \mu_{static})$                                                                                                                                              |                              |
| Belt does not slip                    | $\left(m_b + \frac{J_{sec}}{r_{sec}^2} + \frac{J_{pri} + J_i}{r_{pri}^2}\right)\dot{v}_b = \frac{T_{app\_pri}}{r_{pri}} + \frac{T_{app\_sec}}{r_{sec}} \cdot \left(b_b + \frac{b_{sec}}{r_{sec}^2}\right)$    | $+ \frac{b_{pri}}{r_{pr}^2}$ |
|                                       | $\omega_{pri} = \frac{v_b}{r_{pri}}$                                                                                                                                                                          |                              |
|                                       | $\omega_{sec} = \frac{\upsilon_b}{r_{sec}}$                                                                                                                                                                   |                              |
|                                       | $\left T_{BoP\_pri}\right  < T_{fric}(r_{pri}, \mu_{static})$                                                                                                                                                 |                              |
|                                       | $\left T_{BoP\_sec}\right  < T_{fric}(r_{sec}, \mu_{static})$                                                                                                                                                 |                              |

| Condition      | Equations                                                                                                                                 |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Slip direction | $PriSlipDir = \begin{cases} 0 & r_{pri}\omega_{pri} = v_b \\ 1 & r_{pri}\omega_{pri} > v_b \\ -1 & r_{pri}\omega_{pri} < v_b \end{cases}$ |
|                | $SecSlipDir = \begin{cases} 0 & r_{sec}\omega_{sec} = v_b \\ 1 & r_{sec}\omega_{sec} > v_b \\ -1 & r_{sec}\omega_{sec} < v_b \end{cases}$ |

The equations use these variables.

| $T_{BoP\_pri}$ , $T_{BoP\_sec}$         | Belt torque acting on the primary and secondary pulleys, respectively |
|-----------------------------------------|-----------------------------------------------------------------------|
| $T_{app\_pri}$ , $T_{app\_sec}$         | Torque applied to primary and secondary pulleys, respectively         |
| $J_{pri}$ , $J_{sec}$                   | Primary and secondary pulley rotational inertias, respectively        |
| $b_{pri}$ , $b_{sec}$                   | Primary and secondary pulley rotational viscous damping, respectively |
| <i>F</i> <sub>ax</sub>                  | Pulley clamp force                                                    |
| μ                                       | Coefficient of friction                                               |
| $\mu_{kin}$ , $\mu_{static}$            | Coefficient of kinetic and static friction                            |
| $v_b$ , $a_b$                           | Linear speed and acceleration of the belt, respectively               |
| $m_b$                                   | Total belt mass                                                       |
| r <sub>pri</sub> , r <sub>sec</sub>     | Radii of the primary and secondary pulleys, respectively              |
| $\Phi_{wrap}$                           | Wrap angle of belt to pulley contact point                            |
| $\Phi_{wrap\_pri}$ , $\Phi_{wrap\_sec}$ | Primary and secondary pulley wrap angles, respectively                |

## Ports

## Inputs

**Dir — Direction request** scalar

Direction request,  $Dir_{req}$ , controlling the direction. The block filters the request to determine the direction, forward or reverse. *Dir* equals 1 for forward motion. *Dir* equals -1 for reverse.

$$Dir = \begin{cases} 1 \text{ when } Dir_{req} \ge 0\\ -1 \text{ when } Dir_{req} < 0 \end{cases}$$

## PllyRatioReq — Pulley ratio request

scalar

CVT pulley ratio request, ratio<sub>request</sub>.

#### Dependencies

To create this port, for the **Control mode** parameter, select Ideal integrated controller.

### **PriDisp** — **Primary pulley displacement**

scalar

Variator primary pulley displacement,  $x_{pri}$ , in m.

#### Dependencies

To create this port, for the **Control mode** parameter, select External control.

### SecDisp — Secondary pulley displacement

scalar

Variator secondary pulley displacement,  $x_{sec}$ , in m.

### Dependencies

To create this port, for the **Control mode** parameter, select External control.

## EngTrq — Input drive shaft torque

scalar

External torque applied to the input drive shaft,  $T_i$ , in N.m.

# **DiffTrq — Output drive shaft torque** scalar

6-26
External torque applied to the output drive shaft,  $T_o$ , in N.m.

## Output

## Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal        | Description                                  | Variable             | Units |
|---------------|----------------------------------------------|----------------------|-------|
| EngTrq        | Input shaft torque                           | T <sub>i</sub>       | N.m   |
| DiffTrq       | Output shaft torque                          | T <sub>o</sub>       | N.m   |
| EngSpd        | Input shaft speed                            | $\omega_i$           | rad/s |
| DiffSpd       | Output shaft speed                           | $\omega_o$           | rad/s |
| PriRadius     | Primary pulley radius                        | r <sub>pri</sub>     | m     |
| PriPhi        | Primary pulley wrap angle                    | $\Phi_{pri}$         | rad   |
| SecRadius     | Secondary pulley radius                      | r <sub>sec</sub>     | m     |
| SecPhi        | Secondary pulley wrap angle                  | $\Phi_{sec}$         | rad   |
| BltLngthDelta | Change in belt length                        | $\Delta L$           | m     |
| BltLngth      | Belt length                                  | L                    | m     |
| BltLngthInit  | Initial belt length                          | L <sub>o</sub>       | m     |
| BltOnPriTrq   | Belt torque acting on the primary pulley     | T <sub>BoP_pri</sub> | N.m   |
| BltOnSecTrq   | Belt torque acting on the secondary pulley   | T <sub>BoP_sec</sub> | N.m   |
| BltVel        | Linear speed of the belt                     | v <sub>b</sub>       | m/s   |
| PriAngVel     | Primary pulley speed                         | $\omega_{pri}$       | rad/s |
| SecAngVel     | Secondary pulley speed                       | $\omega_{sec}$       | rad/s |
| PriSlipDir    | Primary pulley slip direction indicator      | PriSlipDir           | N/A   |
| SecSlipDir    | Secondary pulley slip<br>direction indicator | SecSlipDir           | N/A   |

| Signal        | Description              | Variable           | Units |
|---------------|--------------------------|--------------------|-------|
| TransSpdRatio | Total no-slip gear ratio | N <sub>final</sub> | N/A   |

#### EngSpd — Input drive shaft speed

scalar

Input drive shaft angular speed,  $\omega_i$ , in rad/sec.

### DiffSpd — Output drive shaft speed

scalar

Output drive shaft angular speed,  $\omega_o$ , in rad/sec.

## **Parameters**

#### **Control mode — External or internal** Ideal integrated controller (default) | External control

Specify the control method, either internal or external.

#### Dependencies

This table summarizes the port and input model configurations.

| Control Mode                | Creates Ports |
|-----------------------------|---------------|
| Ideal integrated controller | PllyRatioReq  |
| External control            | PriDisp       |
|                             | SecDisp       |

#### **Kinematics**

Maximum variator primary pulley radius, rp\_max — Radius
scalar

Maximum variator primary pulley radius,  $rp_{max}$ , in m.

Maximum variator secondary pulley radius, rs\_max — Radius
scalar

Maximum variator secondary pulley radius,  $rs_{max}$ , in m.

```
Minimum variator primary pulley radius, rp_min — Radius
scalar
```

Minimum variator primary pulley radius, *rp<sub>min</sub>*, in m.

```
Minimum variator secondary pulley radius, rs_min — Radius
scalar
```

Minimum variator secondary pulley radius, *rs<sub>min</sub>*, in m.

# Gap distance between variator pulleys, rgap — Specify crown wheel connection

scalar

The gap between the secondary and primary pulleys,  $r_{\rm gap}$ , in m. The figure shows the pulley geometry.



# **Variator wedge angle, thetawedge — Specify crown wheel connection** scalar

Variator wedge angle,  $\Theta_{wedge}$ , in deg.



#### **Dynamics**

Primary pulley inertia, J\_pri - Inertia
scalar

Primary pulley inertia,  $J_{pri}$ , in kg\*m^2.

# Secondary pulley inertia, J\_sec - Inertia scalar

Secondary pulley inertia, *J*<sub>sec</sub>, in kg\*m^2.

# Primary pulley damping coefficient, b\_pri - Damping scalar

Primary pulley damping coefficient,  $b_{pri}$ , in N.m\*s/rad.

Secondary pulley damping coefficient, b\_sec - Damping
scalar

Secondary pulley damping coefficient,  $b_{sec}$ , in N.m\*s/rad.

```
Belt damping coefficient, b_b - Damping
scalar
```

Belt damping coefficient,  $b_b$ , in kg/s.

## Static friction coefficient, mu\_static - Friction

scalar

Static friction coefficient between the belt and primary pulley,  $\mu_{static}$ , dimensionless.

## Kinetic friction coefficient, mu\_kin - Friction

scalar

Kinetic friction coefficient between the belt and primary pulley,  $\mu_{kin}$ , dimensionless.

Belt mass, m\_b — Mass
scalar

Belt mass,  $m_b$ , in kg.

Pulley clamp force, F\_ax — Pulley clamp force
scalar

Pulley clamp force,  $F_{ax}$ , in N.

**Reverse and Output Ratio** 

Forward inertia, J\_fwd — Inertia
scalar

Forward inertia,  $J_{fwd}$ , in kg\*m^2.

Reverse inertia, J\_rev — Inertia scalar

Reverse inertia,  $J_{rev}$ , in kg\*m^2.

Forward efficiency, eta\_fwd — Efficiency
scalar

Forward efficiency,  $\eta_{fwd}$ , dimensionless.

Reverse efficiency, eta\_rev — Efficiency
scalar

Reverse efficiency,  $\eta_{rev}$ , dimensionless.

Reverse gear ratio, N\_rev — Ratio scalar

Reverse gear ratio,  $N_{rev}$ , dimensionless.

Shift time constant, tau\_s - Constant
scalar

Shift time constant,  $\tau_s$ , in s.

Output gear ratio, N\_o - Ratio

scalar

Output gear ratio,  $N_o$ , dimensionless.

# Output gear efficiency, eta\_o - Efficiency scalar

Output gear efficiency,  $\eta_o$ , dimensionless.

## References

- [1] Ambekar, Ashok G. *Mechanism and Machine Theory*. New Delhi: Prentice-Hall of India, 2007.
- [2] Bonsen, B. *Efficiency optimization of the push-belt CVT by variator slip control*. Ph.D. Thesis. Eindhoven University of Technology, 2006.
- [3] CVT How Does It Work. CVT New Zealand 2010 Ltd, 10 Feb. 2011. Web. 25 Apr. 2016. http://www.cvt.co.nz/cvt\_how\_does\_it\_work.htm
- [4] Klaassen, T. W. G. L. The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT. Ph.D. Thesis. Eindhoven University of Technology, 2007.
- [5] Sakagami, K. *Prediction of Friction Drive Limit of Metal V-Belt*. Warrendale, PA: SAE International Journal of Engines 8(3):1408-1416, 2015.

# See Also

CVT Controller

### Introduced in R2017a

# **CVT** Controller

Continuously variable transmission controller Library: Transmission / Transmission Controllers



## Description

The CVT Controller block implements a push belt continuously variable transmission (CVT) controller. The block uses standard pulley and geometric equations to calculate the kinematic setpoints for the CVT variator. You can use the block to control a CVT.

## **Pulley Kinematics**

Using the physical dimensions of the system, the block calculates the primary and secondary variator positions that meet the pulley ratio request.

The figure and equations summarize the geometric dependencies.



$$\begin{split} C_{dist} &= rp_{max} + r_{gap} + r_{sec\_max} \\ L_0 &= f\left(rp_{max}, rs_{max}, rp_{min}, rs_{min}, C_{dist}\right) \\ ratio_{command} &= f\left(ratio_{request}, ratio_{max}, ratio_{min}\right) \\ r_{pri} &= f\left(r_0, ratio_{command}, C_{dist}\right) \\ r_{sec} &= f\left(r_0, ratio_{command}, C_{dist}\right) \\ x_{pri} &= f\left(r_0, r_{pri}, \theta_{wedge}\right) \\ x_{sec} &= f\left(r_0, r_{sec}, \theta_{wedge}\right) \end{split}$$

The equations use these variables.

| ratio <sub>request</sub> | Pulley gear ratio request                                                                |
|--------------------------|------------------------------------------------------------------------------------------|
| ratio <sub>command</sub> | $Pulley \ gear \ ratio \ command, \ based \ on \ request \ and \ physical \ limitations$ |
| $r_{gap}$                | Gap distance between variator pulleys                                                    |
| $C_{dist}$               | Distance between variator pulley centers                                                 |
| <i>rp<sub>max</sub></i>  | Maximum variator primary pulley radius                                                   |
|                          |                                                                                          |

| rs <sub>max</sub> | Maximum variator secondary pulley radius                                  |
|-------------------|---------------------------------------------------------------------------|
| $rp_{min}$        | Minimum variator primary pulley radius                                    |
| rs <sub>min</sub> | Minimum variator secondary pulley radius                                  |
| $r_o$             | Initial pulley radii with gear ratio of 1                                 |
| $L_o$             | Initial belt length, resulting from variator specification                |
| x <sub>pri</sub>  | Variator primary pulley displacement, resulting from controller request   |
| X <sub>sec</sub>  | Variator secondary pulley displacement, resulting from controller request |
| r <sub>pri</sub>  | Variator primary pulley radius, resulting from controller request         |
| r <sub>sec</sub>  | Variator secondary pulley radius, resulting from controller request       |
| $\Theta_{wedge}$  | Variator wedge angle                                                      |
| $\Phi$            | Angle of belt to pulley contact point                                     |
| L                 | Belt length, resulting from variator position                             |
|                   |                                                                           |

## Ports

## Inputs

## DirReq — Direction request

scalar

Direction request,  $Dir_{req}$ , controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.

$$Dir = \begin{cases} 1 \text{ when } Dir_{req} \ge 0 \\ -1 \text{ when } Dir_{req} < 0 \end{cases}$$

## PllyRatioReq — Pulley ratio request

scalar

CVT pulley ratio request, *ratio*<sub>request</sub>.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal     |                    | Description                                                                        | Variable                   | Units |
|------------|--------------------|------------------------------------------------------------------------------------|----------------------------|-------|
| Radius     | PriRadius          | Variator primary pulley<br>radius, resulting from<br>controller request            | r <sub>pri</sub>           | m     |
|            | SecRadius          | Variator secondary<br>pulley radius, resulting<br>from controller request          | r <sub>sec</sub>           | m     |
|            | InitPllyRadiu<br>s | Initial pulley radii with<br>gear ratio of 1                                       | r <sub>o</sub>             | m     |
| RatioAdj   |                    | Pulley gear ratio<br>command, based on<br>request and physical<br>limitations      | ratio <sub>command</sub>   | N/A   |
| RatioMax   |                    | Maximum pulley ratio                                                               | ratio <sub>max</sub>       | N/A   |
| RatioMin   |                    | Minimum pulley ratio                                                               | <i>ratio<sub>min</sub></i> | N/A   |
| PriDispCmd |                    | Variator primary pulley<br>displacement, resulting<br>from controller request      | X <sub>pri</sub>           | m     |
| SecDispCmd |                    | Variator secondary<br>pulley displacement,<br>resulting from<br>controller request | X <sub>sec</sub>           | m     |

### **Dir** — **Direction request**

scalar

Direction request,  $Dir_{req}$ , controlling the direction, either forward or reverse. Dir equals 1 for forward motion. Dir equals -1 for reverse.

$$Dir = \begin{cases} 1 \text{ when } Dir_{req} \ge 0 \\ -1 \text{ when } Dir_{req} < 0 \end{cases}$$

# PriDispCmd — Primary pulley displacement scalar

Variator primary pulley displacement,  $x_{pri}$ , in m.

SecDispCmd — Secondary pulley displacement
scalar

Variator secondary pulley displacement,  $x_{sec}$ , in m.

## **Parameters**

Kinematics

```
Maximum variator primary pulley radius, rp_max — Radius
scalar
```

Maximum variator primary pulley radius,  $rp_{max}$ , in m.

Maximum variator secondary pulley radius, rs\_max — Radius
scalar

Maximum variator secondary pulley radius,  $rs_{max}$ , in m.

Minimum variator primary pulley radius, rp\_min — Radius
scalar

Minimum variator primary pulley radius,  $rp_{min}$ , in m.

Minimum variator secondary pulley radius, rs\_min — Radius
scalar

Minimum variator secondary pulley radius, *rs<sub>min</sub>*, in m.

# Gap distance between variator pulleys, rgap — Specify crown wheel connection

scalar



The gap between the secondary and primary pulleys,  $r_{gap}$ , in m. The figure shows the pulley geometry.

**Variator wedge angle, thetawedge — Specify crown wheel connection** scalar

Variator wedge angle,  $\Theta_{wedge}$ , in deg.



## References

- [1] Ambekar, Ashok G. *Mechanism and Machine Theory*. New Delhi: Prentice-Hall of India, 2007.
- [2] Bonsen, B. *Efficiency optimization of the push-belt CVT by variator slip control*. Ph.D. Thesis. Eindhoven University of Technology, 2006.
- [3] *CVT How Does It Work*. CVT New Zealand 2010 Ltd. February 10, 2011. Accessed April 25, 2016. http://www.cvt.co.nz/cvt\_how\_does\_it\_work.htm
- [4] Klaassen, T. W. G. L. The Empact CVT: Dynamics and Control of an Electromechanically Actuated CVT. Ph.D. Thesis. Eindhoven University of Technology, 2007.

## See Also

Continuously Variable Transmission

Introduced in R2017a

# **Dual Clutch Transmission**

Dual clutch transmission that applies torque to the drive shaft Library: Transmission / Transmission Systems



## Description

The Dual Clutch Transmission block implements a dual clutch transmission (DCT). In a DCT, two clutches apply mechanical torque to the drive shaft. Odd gears engage one clutch, while even gears engage the secondary clutch. The number of gears is specified via an integer vector with corresponding gear ratios, inertias, viscous damping, and efficiency factors. The clutch and synchronization engagement rates are linear and adjustable. You can provide external clutch signals or configure the block to generate idealized internal clutch signals. The block implements the transmission model with minimal parameterization or computational cost.

Use the block to model a simplified automated manual transmission (AMT) for:

- · Power and torque capacity sizing
- Determining gear ratio impact on fuel economy and performance

To determine the rotational drive shaft speed and reaction torque, the Dual Clutch Transmission block calculates:

- Clutch lock-up and clutch friction
- Locked rotational dynamics
- Unlocked rotational dynamics

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

| Setting                                                | Block Implementation                                                                                                                     |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Gear only                                              | Efficiency determined from a 1D lookup table that is a function of the gear.                                                             |
| Gear, input torque,<br>input speed, and<br>temperature | Efficiency determined from a 4D lookup table that is a<br>function of:<br>• Gear<br>• Input torque<br>• Input speed<br>• Oil temperature |

## **Clutch Control**

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select **Control mode** parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select **Control mode** parameter External control.

## **Clutch Lock-Up and Clutch Friction**

Based on the clutch lock-up condition, the block implements one of these friction models.

| lf                                  | Clutch<br>Condition | Friction Model                                                                      |
|-------------------------------------|---------------------|-------------------------------------------------------------------------------------|
|                                     | Unlocked            |                                                                                     |
| $\omega_i \neq N\omega_d$           |                     |                                                                                     |
| or $T_{\alpha} < T_{\alpha}$ Number |                     |                                                                                     |
| $ I_S <  I_f - I v w_i o_i $        |                     | $T_f = T_k$                                                                         |
|                                     |                     | where, $\begin{bmatrix} (w, y) \end{bmatrix}$                                       |
|                                     |                     | $T_k = F_c R_{eff} \mu_k \tanh \left[ 4 \left( \frac{w_i}{N} - w_d \right) \right]$ |
|                                     |                     | $T_s = F_c R_{eff} \mu_s $                                                          |
|                                     |                     | $R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$                               |

| lf                             | Clutch<br>Condition | Friction Model |
|--------------------------------|---------------------|----------------|
|                                | Locked              | $T_f = T_s$    |
| $\omega_i = N \omega_t$<br>and |                     |                |

 $T_S \ge |T_f - Nb_i\omega_i|$ The equations use these variables.

| $\omega_t$   | Output drive shaft speed        |  |
|--------------|---------------------------------|--|
| $\omega_i$   | Input drive shaft speed         |  |
| $\omega_d$   | Drive shaft speed               |  |
| $b_i$        | Viscous damping                 |  |
| $F_c$        | Applied clutch force            |  |
| Ν            | Engaged gear                    |  |
| $T_{f}$      | Frictional torque               |  |
| $T_k$        | Kinetic frictional torque       |  |
| $T_s$        | Static frictional torque        |  |
| $R_{ m eff}$ | Effective clutch radius         |  |
| $R_o$        | Annular disk outer radius       |  |
| $R_i$        | Annular disk inner radius       |  |
| $\mu_s$      | Coefficient of static friction  |  |
| $\mu_k$      | Coefficient of kinetic friction |  |

## **Locked Rotational Dynamics**

To model the rotational dynamics when the clutch is locked, the block implements these equations.

$$\dot{\omega}_d J_N = \eta_N T_d - \frac{\omega_i}{N} b_N + N T_i$$
  
 $\omega_i = N \omega_d$ 

The block determines the input torque,  $T_i$ , through differentiation.

The equations use these variables.

| $\omega_i$     | Input drive shaft speed      |
|----------------|------------------------------|
| $\omega_d$     | Drive shaft speed            |
| Ν              | Engaged gear                 |
| $b_N$          | Engaged gear viscous damping |
| $J_N$          | Engaged gear inertia         |
| $\eta_N$       | Engaged gear efficiency      |
| $T_d$          | Drive shaft torque           |
| T <sub>i</sub> | Applied input torque         |
|                |                              |

## **Unlocked Rotational Dynamics**

To model the rotational dynamics when the clutch is unlocked, the block implements this equation.

$$\dot{\omega}_d J_N = NT_f - \omega_d b_N + T_d$$

where:

| $\omega_d$ | Drive shaft speed            |
|------------|------------------------------|
| Ν          | Engaged gear                 |
| $b_N$      | Engaged gear viscous damping |
| $J_N$      | Engaged gear inertia         |
| $T_d$      | Drive shaft torque           |
| $T_i$      | Applied input torque         |

## Ports

## Inputs

Gear — Gear number to engage

scalar

Integer value of gear number to engage.

# CltchACmd — Command for odd-numbered gears scalar

Clutch pressure command for odd-numbered gears, between 0 and 1.

### Dependencies

To create this port, select **Control mode** parameter External control.

## CltchBCmd — Command for even-numbered gears

scalar

Clutch pressure command for even-numbered gears, between 0 and 1.

### Dependencies

To create this port, select Control mode parameter External control.

### EngTrq — Applied torque

scalar

Applied input torque,  $T_i$ , typically from the engine crankshaft or dual mass flywheel damper, in N.m.

## DiffTrq — Applied torque

scalar

Applied load torque,  $T_d$ , typically from the drive shaft, in N.m.

## Temp — Oil temperature

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- Input torque
- Input speed
- Oil temperature

#### Dependencies

To create this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

## Output

### Info — Bus signal

bus

| Signal              |                   | Description                                                                                   | Variable       | Units |
|---------------------|-------------------|-----------------------------------------------------------------------------------------------|----------------|-------|
| Eng                 | EngTrq            | Applied input torque, typically<br>from the engine crankshaft or<br>dual mass flywheel damper | T <sub>i</sub> | N.m   |
|                     | EngSpd            | Applied drive shaft angular speed input                                                       | $\omega_i$     | rad/s |
| Diff                | DiffTrq           | Applied load torque, typically from the differential                                          | T <sub>d</sub> | N.m   |
|                     | DiffSpd           | Drive shaft angular speed<br>output                                                           | $\omega_d$     | rad/s |
| Cltch CltchFc<br>ce |                   | Applied clutch force                                                                          | F <sub>c</sub> | N     |
|                     | CltchLoc<br>ked   | Clutch state                                                                                  | NA             | NA    |
| Trans               | TransSpd<br>Ratio | Input to output speed ratio at time t                                                         | $\Phi(t)$      | NA    |
|                     | TransEta          | Ratio of output power to input power                                                          | $\eta_N$       | NA    |

| Signal |                  | Description    | Variable  | Units |
|--------|------------------|----------------|-----------|-------|
|        | TransGea<br>rCmd | Commanded gear | $N_{cmd}$ | NA    |
|        | TransGea<br>r    | Engaged gear   | Ν         | NA    |

### EngSpd — Angular speed

scalar

Drive shaft angular speed,  $\omega_d$ , in rad/s.

### DiffSpd — Angular speed

scalar

Drive shaft angular speed,  $\omega_d$ , in rad/s.

## **Parameters**

#### Control mode — Specify control mode

External control (default) | Ideal integrated controller

The DCT delivers drive shaft torque continuously by controlling the pressure signals from both clutches. If you select **Control mode** parameter Ideal integrated controller, the block generates idealized clutch pressure signals. The block uses the maximum pressure from each clutch to approximate the single-clutch commands that result in equivalent drive shaft torque. To use your own clutch control signals, select **Control mode** parameter External control.

#### Dependencies

This table summarizes the port configurations.

| Control Mode     | Creates Ports |
|------------------|---------------|
| External control | CltchACmd     |
|                  | CltchBCmd     |

#### Efficiency factors — Specify efficiency calculation

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

| Setting                                                | Block Implementation                                                                                                |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Gear only                                              | Efficiency determined from a 1D lookup table that is a function of the gear.                                        |
| Gear, input torque,<br>input speed, and<br>temperature | Efficiency determined from a 4D lookup table that is a<br>function of:<br>• Gear<br>• Input torque<br>• Input speed |
|                                                        | Oil temperature                                                                                                     |

#### Dependencies

| Setting Parameter To                                   | Enables                                                                             |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| Gear only                                              | Efficiency vector, eta                                                              |  |
| Gear, input torque,<br>input speed, and<br>temperature | Efficiency torque breakpoints, Trq_bpts<br>Efficiency speed breakpoints, omega_bpts |  |
|                                                        | Efficiency temperature breakpoints, Temp_bpts<br>Efficiency lookup table, eta_tbl   |  |

#### Transmission

Input shaft inertia, Jin - Inertia
scalar

Input shaft inertia, in kg\*m^2.

# Input shaft damping, bin - Damping scalar

Input shaft damping, in N.m\*s/rad.

Initial input velocity, omegain\_o — Angular velocity
scalar

Angular velocity, in rad/s.

# Efficiency torque breakpoints, Trq\_bpts — Breakpoints vector

Torque breakpoints for efficiency table, in N·m.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

# Efficiency speed breakpoints, omega\_bpts — Breakpoints vector

Speed breakpoints for efficiency table, in rad/s.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

# Efficiency temperature breakpoints, Temp\_bpts — Breakpoints vector

Temperature breakpoints for efficiency table, in K.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

# Gear number vector, G — Specify number of transmission speeds vector

Vector of integers used to specify the number of transmission speeds. Neutral gear is 0. For example, you can set these parameter values.

| To Specify                | Set Gear number, G to |
|---------------------------|-----------------------|
| Four transmission speeds, | [0,1,2,3,4]           |
| including neutral         |                       |

| To Specify                                                  | Set Gear number, G to |
|-------------------------------------------------------------|-----------------------|
| Three transmission speeds,<br>including neutral and reverse | [-1,0,1,2,3]          |
| Five transmission speeds, including neutral and reverse     | [-1,0,1,2,3,4,5]      |

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

# Gear ratio vector, N — Ratio of input speed to output speed vector

Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

| To Specify Gear Ratios<br>for                                 | Set Gear number, G<br>to | Set Gear ratio, N to               |
|---------------------------------------------------------------|--------------------------|------------------------------------|
| Four transmission speeds, including neutral                   | [0,1,2,3,4]              | [1,4.47,2.47,1.47,1]               |
| Five transmission speeds,<br>including neutral and<br>reverse | [-1,0,1,2,3,4,5]         | [-4.47,1,4.47,2.47,1.47,1,0<br>.8] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

# **Transmission inertia vector, Jout — Gear rotational inertia** vector

Vector of gear rotational inertias, with indices corresponding to the inertias specified in **Gear number**, **G**, in kg\*m^2. For example, you can set these parameter values.

| To Specify Inertia for        | Set Gear number, G<br>to | Set Inertia, J to           |
|-------------------------------|--------------------------|-----------------------------|
| Four gears, including neutral | [0,1,2,3,4]              | [0.01,2.28,2.04,0.32,0.028] |

| To Specify Inertia for                                      | Set Gear number, G<br>to | Set Inertia, J to                         |
|-------------------------------------------------------------|--------------------------|-------------------------------------------|
| Inertia for five gears,<br>including reverse and<br>neutral | [-1,0,1,2,3,4,5]         | [2.28,0.01,2.28,2.04,0.32,0<br>.028,0.01] |

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

## Damping vector, bout — Gear viscous damping coefficient

vector

Vector of gear viscous damping coefficients, with indices corresponding to the coefficients specified in **Gear number**, **G**, in N.m\*s/rad. For example, you can set these parameter values.

| To Specify Damping for                    | Set Gear number, G<br>to | Set Damping, b to                                |
|-------------------------------------------|--------------------------|--------------------------------------------------|
| Four gears, including<br>neutral          | [0,1,2,3,4]              | [0.001,0.003,0.0025,<br>0.002,0.001]             |
| Five gears, including reverse and neutral | [-1,0,1,2,3,4,5]         | [0.003,0.001,0.003,0.0025,<br>0.002,0.001,0.001] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Transmission inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

## Efficiency vector, eta — Gear efficiency

vector

Vector of gear mechanical efficiency, with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

| To Specify Efficiency for                 | Set Gear number, G<br>to | Set Efficiency, eta to              |
|-------------------------------------------|--------------------------|-------------------------------------|
| Four gears, including<br>neutral          | [0,1,2,3,4]              | [0.9,0.9,0.9,0.9,0.95]              |
| Five gears, including reverse and neutral | [-1,0,1,2,3,4,5]         | [0.9,0.9,0.9,<br>0.9,0.9,0.95,0.95] |

Vector dimensions for the Gear number vector, Gear ratio vector, Transmission inertia vector, Damping vector, and Efficiency vector parameters must be equal.

#### Dependencies

To enable this parameter, set Efficiency factors to Gear only.

### Efficiency lookup table, eta\_tbl — Gear efficiency

array

Table of gear mechanical efficiency,  $\eta_N$  as a function of gear, input torque, input speed, and temperature.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

## **Initial output velocity, omegaout\_o — Transmission**

scalar

Transmission initial output rotational velocity,  $\omega_{to}$ , in rad/s. If you select **Clutch initially locked**, the block ignores the **Initial output velocity**, **omega\_o** parameter value.

### Initial gear, G\_o — Engaged gear

scalar

Initial gear to engage,  $G_o$ .

#### **Clutch and Synchronizer**

**Clutch pressure time constant, tauc — Time** scalar

Time required to engage and disengage the clutch during shift events,  $t_c$ , in s.

Synchronization time, ts - Time
scalar

Time required for gear selection and synchronization,  $t_s$ , in s.

# **Clutch time, tc — Time** scalar

Time required to engage clutch,  $t_c$ , in s.

#### Dependencies

To create this parameter, select **Control mode** parameter Ideal integrated controller.

## Effective clutch radius, R — Radius

scalar

The effective radius,  $R_{eff}$ , used with the applied clutch friction force to determine the friction force, in m. The effective radius is defined as:

$$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$$

The equation uses these variables.

Annular disk outer radius  $R_o$ 

Annular disk inner radius

## Clutch force gain, K\_c - Force

scalar

Open loop lock-up clutch gain,  $K_c$ , in N.

# Clutch static friction coefficient, mus - Coefficient scalar

Dimensionless clutch disc coefficient of static friction,  $\mu_s$ .

# Clutch kinematic friction coefficient, muk - Coefficient scalar

Dimensionless clutch disc coefficient of kinetic friction,  $\mu_k$ .

```
Clutch initially locked — Select to initially lock clutch off (default)
```

Selecting this parameter initially locks the clutch.

#### Dependencies

To create this parameter, select **Control mode** parameter Ideal integrated controller.

**Synchronizer initially locked — Select to initially lock synchronizer** off (default)

Selecting this parameter initially locks the synchronizer.

## See Also

Automated Manual Transmission | DCT Controller

## Introduced in R2017a

# **DCT Controller**

Dual clutch transmission controllerLibrary:Transmission / Transmission Controllers



## Description

The DCT Controller block implements a dual clutch transmission (DCT) controller. You can specify the clutch open, close, and synchronization timing parameters. The block determines the clutch commands using integrator-based timers and latching logic that is based on the specified timing parameters and gear request.

## Ports

## Inputs

GearReq — Gear number to engage scalar

Gear number request,  $G_{req}$ .

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal  | Description         | Variable         |
|---------|---------------------|------------------|
| GearReq | Gear number request | G <sub>req</sub> |

| Signal    | Description                                                      | Variable       |
|-----------|------------------------------------------------------------------|----------------|
| GearEngd  | Nominal gear commanded by the controller                         | G <sub>o</sub> |
| GearEffct | Effective gear                                                   | NA             |
| CltchACmd | Clutch pressure command for odd-numbered gears, between 0 and 1  | NA             |
| CltchBCmd | Clutch pressure command for even-numbered gears, between 0 and 1 | NA             |

#### NomGear — Nominal gear for shifting

scalar

Nominal gear for shifting. The Dual Clutch Transmission block uses this signal for the smooth application of inertial, efficiency, gear ratio, and damping parameters.

### CltchACmd — Command for odd-numbered gears

scalar

Clutch pressure command for odd-numbered gears, between 0 and 1.

### CltchBCmd — Command for even-numbered gears

scalar

Clutch pressure command for even-numbered gears, between 0 and 1.

## **Parameters**

Initial gear, G\_o — Engaged gear
scalar

Initial gear to engage,  $G_o$ .

Clutch actuation time, tc — Time
scalar

Time required to engage and disengage the clutch during shift events,  $t_c$ , in s.

```
Synchronizer time, ts — Time
scalar
```

Time required for gear selection and synchronization,  $t_s$ , in s.

# Sample period, dt — Time scalar

Sample period, *dt*, in s.

# **Clutch initially locked — Select to initially lock clutch** off (default)

Selecting this parameter initially locks the clutch.

# **Synchronizer initially locked — Select to initially lock synchronizer** off (default)

Selecting this parameter initially locks the synchronizer.

## See Also

AMT Controller | Dual Clutch Transmission

Introduced in R2017a

# **Ideal Fixed Gear Transmission**

Ideal fixed gear transmission without clutch or synchronization Library: Transmission / Transmission Systems



## Description

The Ideal Fixed Gear Transmission implements an idealized fixed-gear transmission without a clutch or synchronization. Use the block to model the overall gear ratio and power loss when you do not need a detailed transmission model, for example, in component-sizing, fuel economy, and emission studies. The block implements a transmission model with minimal parameterization or computational cost.

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

| Setting                                                | Block Implementation                                                          |
|--------------------------------------------------------|-------------------------------------------------------------------------------|
| Gear only                                              | Efficiency determined from a 1D lookup table that is a function of the gear.  |
| Gear, input torque,<br>input speed, and<br>temperature | Efficiency determined from a 4D lookup table that is a function of:<br>• Gear |
|                                                        | Input torque                                                                  |
|                                                        | <ul><li>Input speed</li><li>Oil temperature</li></ul>                         |

The block uses this equation to determine the transmission dynamics:

$$\dot{\omega}_{i} \frac{J_{N}}{N} = \eta_{N} \left(\frac{T_{o}}{N} + T_{i}\right) - \frac{\omega_{i}}{N^{2}} b_{N}$$
$$\omega_{i} = N \omega_{o}$$

The block filters the gear command signal:

$$\frac{G}{G_{cmd}}(s) = \frac{1}{\tau_s s + 1}$$

The equations use these variables.

| $b_N$                         | Engaged gear viscous damping                                                            |
|-------------------------------|-----------------------------------------------------------------------------------------|
| $J_N$                         | Engaged gear rotational inertia                                                         |
| $\eta_N$                      | Engaged gear efficiency                                                                 |
| G                             | Engaged gear number                                                                     |
| $G_{cmd}$                     | Gear number to engage                                                                   |
| Ν                             | Engaged gear ratio                                                                      |
| $T_i$                         | Applied input torque, typically from the engine crankshaft or dual mass flywheel damper |
| $T_o$                         | Applied load torque, typically from the differential or drive shaft                     |
| $\omega_o$                    | Output drive shaft angular speed                                                        |
| $\omega_i,  \acute{\omega_i}$ | Applied drive shaft angular speed and acceleration                                      |
| $	au_s$                       | Shift time constant                                                                     |
|                               |                                                                                         |

## Ports

## Inputs

## Gear — Gear number to engage

scalar

Integer value of gear number to engage,  $G_{cmd}$ .

## EngTrq — Applied input torque

scalar

Applied input torque,  $T_i$ , typically from the engine crankshaft or dual mass flywheel damper, in N·m.

## DiffTrq — Applied load torque

scalar

Applied load torque,  $T_o$ , typically from the differential, in N·m.

### Temp — Oil temperature

scalar

Oil temperature, in K. To determine the efficiency, the block uses a 4D lookup table that is a function of:

- Gear
- Input torque
- Input speed
- Oil temperature

#### Dependencies

To create this port, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

## Output

### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal Description |         | Description                                                                                   | Variable       | Units |
|--------------------|---------|-----------------------------------------------------------------------------------------------|----------------|-------|
| Eng                | EngTrq  | Applied input torque, typically<br>from the engine crankshaft or<br>dual mass flywheel damper | $T_i$          | N∙m   |
|                    | EngSpd  | Applied drive shaft angular speed input                                                       | $\omega_i$     | rad/s |
| Diff               | DiffTrq | Applied load torque, typically from the differential                                          | T <sub>o</sub> | N∙m   |
|                    | DiffSpd | Drive shaft angular speed<br>output                                                           | ωο             | rad/s |

| Signal |                   | Description                           | Variable  | Units |
|--------|-------------------|---------------------------------------|-----------|-------|
| Trans  | TransSpd<br>Ratio | Input to output speed ratio at time t | $\Phi(t)$ | N/A   |
|        | TransEta          | Ratio of output power to input power  | $\eta_N$  | N/A   |
|        | TransGea<br>rCmd  | Commanded gear                        | $N_{cmd}$ | N/A   |
|        | TransGea<br>r     | Engaged gear                          | N         | N/A   |

### EngSpd — Angular speed

scalar

Applied drive shaft angular speed input,  $\omega_i$ , in rad/s.

### DiffSpd — Angular speed

scalar

Drive shaft angular speed output,  $\omega_o$ , in rad/s.

## **Parameters**

### Efficiency factors - Specify efficiency calculation

Gear only (default) | Gear, input torque, input speed, and temperature

To specify the block efficiency calculation, for **Efficiency factors**, select either of these options.

| Setting   | Block Implementation                                                         |
|-----------|------------------------------------------------------------------------------|
| Gear only | Efficiency determined from a 1D lookup table that is a function of the gear. |

| Setting                                                | Block Implementation                                                          |
|--------------------------------------------------------|-------------------------------------------------------------------------------|
| Gear, input torque,<br>input speed, and<br>temperature | Efficiency determined from a 4D lookup table that is a function of:<br>• Gear |
|                                                        | Input torque                                                                  |
|                                                        | Input speed                                                                   |
|                                                        | Oil temperature                                                               |

#### Dependencies

| Setting Parameter To                                   | Enables                                                                             |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Gear only                                              | Efficiency vector, eta                                                              |
| Gear, input torque,<br>input speed, and<br>temperature | Efficiency torque breakpoints, Trq_bpts<br>Efficiency speed breakpoints, omega_bpts |
|                                                        | Efficiency temperature breakpoints, Temp_bpts<br>Efficiency lookup table, eta tbl   |

### Gear property interpolation method — Interpolation

Nearest(default)|Linear|Flat|Cubic spline

Method that the block uses to switch the gear ratio during gear shifting.

#### Transmission

# Gear number vector, G — Specify number of transmission speeds vector

Vector of integer gear commands used to specify the number of transmission speeds. Neutral gear is 0. For example, you can set these parameter values.

| To Specify                                  | Set Gear number, G to |
|---------------------------------------------|-----------------------|
| Four transmission speeds, including neutral | [0,1,2,3,4]           |

| To Specify                                               | Set Gear number, G to |
|----------------------------------------------------------|-----------------------|
| Three transmission speeds, including neutral and reverse | [-1,0,1,2,3]          |
| Five transmission speeds, including neutral and reverse  | [-1,0,1,2,3,4,5]      |

Vector dimensions for the Gear number vector, Gear ratio vector, Inertia vector, Damping vector, and Efficiency vector parameters must be equal.

# Efficiency torque breakpoints, Trq\_bpts — Breakpoints vector

Torque breakpoints for efficiency table.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

## Efficiency speed breakpoints, omega\_bpts — Breakpoints

vector

Speed breakpoints for efficiency table.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

# Efficiency temperature breakpoints, Temp\_bpts - Breakpoints vector

Temperature breakpoints for efficiency table.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

Gear ratio vector, N — Ratio of input speed to output speed
vector
Vector of gear ratios (that is, input speed to output speed) with indices corresponding to the ratios specified in **Gear number**, **G**. For neutral, set the gear ratio to 1. For example, you can set these parameter values.

| To Specify Gear Ratios<br>for                                 | Set Gear number, G<br>to | Set Gear ratio, N to               |
|---------------------------------------------------------------|--------------------------|------------------------------------|
| Four transmission speeds, including neutral                   | [0,1,2,3,4]              | [1,4.47,2.47,1.47,1]               |
| Five transmission speeds,<br>including neutral and<br>reverse | [-1,0,1, 2,3,4,5]        | [-4.47,1,4.47,2.47,<br>1.47,1,0.8] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

#### Inertia vector, Jout — Gear rotational inertia

vector

Vector of gear rotational inertias,  $J_N$ , with indices corresponding to the inertias specified in **Gear number**, **G**, in kg\*m^2. For example, you can set these parameter values.

| To Specify Inertia for                                      | Set Gear number, G<br>to | Set Inertia, J to                         |
|-------------------------------------------------------------|--------------------------|-------------------------------------------|
| Four gears, including neutral                               | [0,1,2,3,4]              | [0.01,2.28,2.04,<br>0.32,0.028]           |
| Inertia for five gears,<br>including reverse and<br>neutral | [-1,0,1, 2,3,4,5]        | [2.28,0.01,2.28,<br>2.04,0.32,0.028,0.01] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

# Damping vector, bout — Gear viscous damping coefficient vector

Vector of gear viscous damping coefficients,  $b_N$ , with indices corresponding to the coefficients specified in **Gear number**, **G**, in N·m·s/rad. For example, you can set these parameter values.

| To Specify Damping for                    | Set Gear number, G<br>to | Set Damping, b to                                 |
|-------------------------------------------|--------------------------|---------------------------------------------------|
| Four gears, including<br>neutral          | [0,1,2,3,4]              | [0.001,0.003,<br>0.0025,0.002,0.001]              |
| Five gears, including reverse and neutral | [-1,0,1, 2,3,4,5]        | [0.003,0.001, 0.003,0.0025,<br>0.002,0.001,0.001] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

#### Efficiency vector, eta — Gear efficiency

vector

Vector of gear mechanical efficiency,  $\eta_N$ , with indices corresponding to the efficiencies specified in **Gear number**, **G**. For example, you can set these parameter values.

| To Specify Efficiency for                 | Set Gear number, G<br>to | Set Efficiency, eta to              |
|-------------------------------------------|--------------------------|-------------------------------------|
| Four gears, including<br>neutral          | [0,1,2,3,4]              | [0.9,0.9,0.9,0.9,0.95]              |
| Five gears, including reverse and neutral | [-1,0,1, 2,3,4,5]        | [0.9,0.9,0.9,<br>0.9,0.9,0.95,0.95] |

Vector dimensions for the **Gear number vector**, **Gear ratio vector**, **Inertia vector**, **Damping vector**, and **Efficiency vector** parameters must be equal.

#### Dependencies

To enable this parameter, set Efficiency factors to Gear only.

### Efficiency lookup table, eta\_tbl — Gear efficiency

array

Table of gear mechanical efficiency,  $\eta_{\rm N}$  as a function of gear, input torque, input speed, and temperature.

#### Dependencies

To enable this parameter, set **Efficiency factors** to Gear, input torque, input speed, and temperature.

# Initial output velocity, omega\_o — Transmission scalar

Transmission initial output rotational velocity,  $\omega_{to}$ , in rad/s. If you select **Clutch initially locked**, the block ignores the **Initial output velocity**, **omega\_o** parameter value.

#### Shift time constant, tau\_s - Time

scalar

Shift time constant,  $\tau_s$ , in s.

### See Also

Automated Manual Transmission | Continuously Variable Transmission | Dual Clutch Transmission

#### Introduced in R2017a

## **Torque Converter**

Three-part torque converter consisting of an impeller, turbine, and stator Library: Transmission / Torque Converters



## Description

The Torque Converter block implements a three-part torque converter consisting of an impeller, turbine, and stator with an optional clutch lock-up capability. The block can simulate driving (power flowing from impeller to turbine) and coasting (power flowing from turbine to impeller).

You can specify torque converter characteristics:

- Speed ratio Ratio of turbine angular speed to impeller angular speed
- Torque ratio Ratio of turbine torque to impeller torque
- Capacity factor parameterization Function of input speed or input torque

Optional clutch lock-up configurations include:

- No lock-up Model fluid-coupling only
- Lock-up Model automatic clutch engagement
- External lock-up Model clutch pressure as input from an external signal



### **Equations**

The block implements equations that use these variables.

| $T_{f}$        | Frictional torque                 |
|----------------|-----------------------------------|
| $T_{h}$        | Kinetic frictional torque         |
| $T_{a}$        | Static frictional torque          |
| s<br>T:        | Applied input torque              |
| ι<br>T         | Impeller reaction torque          |
| T <sub>p</sub> | Externally applied turbine torque |
| $\psi(\phi)$   | Torque conversion capacity factor |
| ζ(φ)           | Torque ratio                      |
| $\omega_i$     | Impeller rotational shaft speed   |
|                |                                   |

| $\omega_t$ | Turbine rotational shaft speed      |
|------------|-------------------------------------|
| $J_i$      | Impeller rotational inertia         |
| $J_t$      | Turbine rotational inertia          |
| $b_i$      | Impeller rotational viscous damping |
| $b_t$      | Turbine rotational viscous damping  |
| r<br>R aa  | Effective clutch radius             |
| Reff       | Annular disk outer radius           |
| R:         | Annular disk inner radius           |
| -1         |                                     |

Based on the clutch lock-up condition, the block implements these friction models.

| lf                                                                                                       | Clutch<br>Condition   | Friction Model                                                                    |
|----------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------|
|                                                                                                          | Unlocked              |                                                                                   |
|                                                                                                          |                       |                                                                                   |
| $\omega_i \neq \omega_t$                                                                                 |                       |                                                                                   |
| or                                                                                                       |                       | $T_f = T_k$                                                                       |
| $\left  T_{S} < \left  \frac{J_{t}}{(I_{t} + I_{t})} \right  T_{i} + T_{f} - \omega_{i} (I_{t}) \right $ | $b_t + b_i$           | where:                                                                            |
| $ (J_i + J_t) ^{\perp}$                                                                                  |                       | $T_{k} = F_{c}R_{eff}m_{k} \tanh\left[4\left(\omega_{i}-\omega_{t}\right)\right]$ |
|                                                                                                          | Locked                | $\mathbf{I}_{f_{s}} = \mathbf{I}_{s_{c}} R_{eff} m_{s}$                           |
|                                                                                                          |                       | $R_{eff} = \frac{2(R_o^3 - R_i^3)}{2}$                                            |
| $\omega_i = \omega_t$                                                                                    |                       | $3(R_o^2 - R_i^2)$                                                                |
| and                                                                                                      |                       |                                                                                   |
| $T_S \ge \left  \frac{J_t}{(I_t - I_t)} \right  T_i + T_f - w_t (t)$                                     | $b_t + b_i + w_t b_t$ |                                                                                   |

To model the rotational dynamics if the clutch is locked, the block implements equations.

$$\dot{\omega}(J_i + J_t) = T_i - \omega(b_i + b_t) + T_{ext}$$
$$\omega = \omega_i = \omega_t$$

The rotational velocity represents both the impeller and turbine rotational velocities.

To model the rotational dynamics if the clutch is unlocked, the block implements equations.

$$\begin{split} \dot{\omega}_i J_i &= \mathbf{T}_i - \omega_i b_i - T_f - T_p \\ \dot{\omega}_t J_t &= \mathbf{T}_{ext} - \omega_t b_t + T_f + T_t \\ T_p &= \omega_i^2 \psi(\phi) \\ T_t &= T_p \zeta(\phi) \end{split}$$

To approximate the torque multiplication lag between the impeller and turbine, you can specify the parameter **Fluid torque response time constant (set to 0 to disable)**, **tauc [s]**.

### Ports

### Inputs

# ImpTrq — Applied impeller torque scalar

Applied input torque, typically from the engine crankshaft or dual mass flywheel, in N.m.

### TurbTrq — Applied turbine torque

```
scalar
```

Applied turbine torque, typically from the transmission, in N.m.

# Clutch Force — Applied clutch force scalar

Applied clutch force, typically from a hydraulic actuator, in N.

#### Dependencies

To create this port, select External lock-up input for the Lock-up clutch configuration parameter.

### Output

#### Info — Bus signal

bus

Bus signal containing these block calculations.

| Signal  |                 | Description                     | Units |
|---------|-----------------|---------------------------------|-------|
| Imp     | ImpTrq          | Applied input torque            | N.m   |
|         | ImpSpd          | Impeller rotational shaft speed | rad/s |
| Turb    | TurbTrq         | Applied turbine torque          | N.m   |
|         | TurbSpd         | Turbine rotational shaft speed  | rad/s |
| Cltch   | CltchForce      | Applied clutch force            | Ν     |
|         | CltchLocked     | Clutch locked or unlocked state | N/A   |
| TrqConv | TrqConvSpdRatio | Turbine to impeller speed ratio | N/A   |
|         | TrqConvEta      | Torque conversion<br>efficiency | N/A   |

#### ImpSpd — Impeller speed

scalar

Impeller rotational shaft speed,  $\omega_i$ , in rad/s.

### TrbSpd — Turbine speed

scalar

Turbine rotational shaft speed,  $\omega_t$ , in rad/s.

### **Parameters**

#### Configuration

#### Lock-up clutch configuration — Select lock-up clutch configuration

Lock-up (default) | No lock-up | External lock-up input

| To Model                                         | Select                 |
|--------------------------------------------------|------------------------|
| Fluid-coupling only                              | No lock-up             |
| Automatic clutch engagement                      | Lock-up                |
| Clutch pressure as input from an external signal | External lock-up input |

#### Dependencies

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

#### **Torque Converter**

Impeller shaft inertia, Ji - Inertia
scalar

Impeller shaft inertia, in kg\*m^2.

# Impeller shaft viscous damping, bi — Viscous damping coefficient scalar

Impeller shaft viscous damping, in N.m\*s/rad.

## **Turbine shaft inertia, Jt — Inertia** scalar

Turbine shaft inertia, in kg\*m^2.

Turbine shaft viscous damping, bi — Viscous damping coefficient
scalar

Turbine shaft viscous damping, in N.m\*s/rad.

Initial impeller shaft velocity, omegaio — Angular velocity
scalar

Initial impeller shaft velocity, in rad/s.

### Initial turbine shaft velocity, omegato — Angular velocity

scalar

Initial turbine shaft velocity, in rad/s.

#### Speed ratio vector, phi — Ratio

vector

Vector of turbine speed to impeller speed ratios. Breakpoints for the capacity and torque multiplication vectors.

#### Capacity factor parameterization — Select factor ratio type

Input speed / sqrt(input torque) (default) | Absorbed torque / input speed^2

| To Set Factor Ratio to                                          | Select                                      |
|-----------------------------------------------------------------|---------------------------------------------|
| Impeller angular velocity to square root impeller torque        | <pre>Input speed / sqrt(input torque)</pre> |
| Impeller absorbed torque to square of impeller angular velocity | Absorbed torque / input speed^2             |

#### Capacity vector, psi — Vector

vector

| Capacity factor parameterization<br>Setting | Capacity Vector Units |
|---------------------------------------------|-----------------------|
| Input speed / sqrt(input<br>torque)         | (rad/s)/(N.m)^0.5     |
| Absorbed torque / input<br>speed^2          | N.m/(rad/s)^2         |

#### Torque ratio vector, zeta — Vector

vector

Vector of turbine torque to impeller speed ratios.

# Fluid torque response time constant (set to 0 to disable), tauTC — Time constant

scalar

To account for the delay in torque calculations due to changing input torque, specify the fluid torque transfer time constant, in s.

#### Interpolation method — Select interpolation method

Linear (default) | Flat | Nearest

Interpolates the torque ratio and capacity factor functions between the discrete relative velocity values.

Clutch

# **Clutch force equivalent net radius, Reff — Effective radius** scalar

The effective radius,  $R_{e\!f\!f}$ , used with the applied clutch friction force to determine the friction force, in m. The effective radius is defined as:

$$R_{eff} = \frac{2(R_o^3 - R_i^3)}{3(R_o^2 - R_i^2)}$$

The equation uses these variables.

*R*<sub>o</sub> Annular disk outer radius

*R<sub>i</sub>* Annular disk inner radius

#### Dependencies

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

# Static friction coefficient, mus - Coefficient scalar

Dimensionless clutch disc coefficient of static friction.

#### Dependencies

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

### Kinetic friction coefficient, muk — Coefficient

scalar

Dimensionless clutch disc coefficient of kinetic friction.

To enable the **Clutch** parameters, select Lock-up or External lock-up input for the **Lock-up clutch configuration** parameter.

# **Initially lock clutch — Select to initially lock clutch** off (default)

#### Dependencies

To enable this parameter, select Lock-up or External lock-up input for the Lock-up clutch configuration parameter.

# Lock-up speed ratio threshold, philu — Threshold scalar

Set speed ratio threshold that engages clutch lock-up.

#### Dependencies

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

# Minimum lock-up engagement speed, omegalmin — Angular velocity scalar

Set the minimum impeller speed that engages clutch lock-up, in rad/s.

#### Dependencies

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

# Lock-up disengagement speed, omegau — Angular velocity scalar

Set the minimum impeller speed that disengages clutch lock-up, in rad/s.

#### Dependencies

To enable this parameter, select  ${\tt Lock-up}$  for the  ${\tt Lock-up}$  clutch configuration parameter.

#### Lock-up clutch force gain, Kclutch — Gain

scalar

Open loop clutch lock-up force gain, in N.

#### Dependencies

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

### Lock-up clutch time constant, taulu — Time constant

scalar

Open loop clutch lock-up time constant, in s.

#### Dependencies

To enable this parameter, select Lock-up for the Lock-up clutch configuration parameter.

### See Also

CI Core Engine | SI Core Engine

Introduced in R2017a

# **Functions**

7

## mdf

Access information contained in MDF file

## Syntax

```
mdfObj = mdf(mdfFileName)
```

## Description

mdfObj = mdf(mdfFileName) identifies a measurement data format (MDF) file and returns an MDF file object, which you can use to access information and data contained in the file. You can specify a full or partial path to the file.

**Note** This function is supported only on 64-bit Windows® operating systems.

## **Examples**

#### **Create MDF File Object for Specified MDF File**

Create an MDF object for a given file, and view the object display.

```
mdfObj = mdf('MDFFile.mf4')
MDF with properties:
File Details
Name: 'MDFFile.mf4'
Path: 'c:\temp\MDFFile.mf4'
Author: 'HOK'
Department: 'Research'
Project: 'MDF'
Subject: 'CAN bus'
Comment: 'This file contains CAN messages'
Version: '4.10'
```

```
DataSize: 32100
InitialTimestamp: 2016-02-27 12:09:02
Creator Details
ProgramIdentifier: 'mmddff.04'
Creator: [1×1 struct]
File Contents
Attachment: [1×1 struct]
ChannelNames: {6×1 cell}
ChannelGroup: [1×6 struct]
```

## **Input Arguments**

#### mdfFileName — MDF file name

char vector | string

MDF file name, specified as a character vector or string, including the necessary full or relative path.

Example: 'MDFFile.mf4'

Data Types: char | string

## **Output Arguments**

mdf0bj — MDF file

MDF file object

MDF file, returned as an MDF file object. The object provides access to the MDF file information contained in the following properties.

| Property   | Description                                    |
|------------|------------------------------------------------|
| Name       | Name of the MDF file, including extension      |
| Path       | Full path to the MDF file, including file name |
| Author     | Author who originated the MDF file             |
| Department | Department that originated the MDF file        |
| Project    | Project that originated the MDF file           |

| Property          | Description                                                                                                                                                               |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subject           | Subject matter in the MDF file                                                                                                                                            |
| Comment           | Open comment field from the MDF file                                                                                                                                      |
| Version           | MDF standard version of the file                                                                                                                                          |
| DataSize          | Total size of the data in the MDF file, in bytes                                                                                                                          |
| InitialTimestamp  | Time when file data acquisition began in UTC or local time                                                                                                                |
| ProgramIdentifier | Originating program of the MDF file                                                                                                                                       |
| Creator           | Structure containing details about creator of the MDF file, with these fields: VendorName, ToolName, ToolVersion, UserName, and Comment                                   |
| Attachment        | Structure of information about attachments contained within the MDF file, with these fields: Name, Path, Comment, Type, MIMEType, Size, EmbeddedSize, and MD5CheckSum     |
| ChannelNames      | Cell array of the channel names in each channel group                                                                                                                     |
| ChannelGroup      | Structure of information about channel groups contained within<br>the MDF file, with these fields: AcquisitionName, Comment,<br>NumSamples, DataSize, Sorted, and Channel |

### See Also

Functions
read | saveAttachment

Introduced in R2016b

### read

Read channel data from MDF file

## Syntax

```
data = read(mdf0bj)
data = read(mdf0bj,chanGroupIndex,chanName)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition)
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType)
[data,time] = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector')
```

## Description

data = read(mdf0bj) reads all data for all channels from the MDF file identified by the MDF file object mdf0bj, and assigns the output to data. If the file data is one channel group, the output is a timetable; multiple channel groups are returned as a cell array of timetables, where the cell array index corresponds to the channel group number.

Note This function is supported only on 64-bit Windows operating systems.

data = read(mdf0bj,chanGroupIndex,chanName) reads all data for the specified channel from the MDF file identified by the MDF file object mdf0bj.

data = read(mdfObj,chanGroupIndex,chanName,startPosition) reads data
from the position specified by startPosition.

```
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition) reads data for the range specified from startPosition to
endPosition.
```

```
data = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat',fmtType) returns data with the specified output
format.
```

```
[data,time] = read(mdf0bj,chanGroupIndex,chanName,startPosition,
endPosition,'OutputFormat','Vector') returns two vectors of channel data and
corresponding timestamps.
```

### **Examples**

#### **Read All Data from MDF File**

Read all available data from the MDF file.

```
mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj);
```

#### **Read All Data from Multiple Channels**

Read all available data from the MDF file for specified channels.

```
mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'});
```

#### **Read Range of Data from Specified Index Values**

Read a range of data from the MDF file using indexing for startPosition and endPosition to specify the data range.

```
mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'},1,10);
```

#### **Read Range of Data from Specified Time Values**

Read a range of data from the MDF file using time values for startPosition and endPosition to specify the data range.

```
mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,{'Channel1','Channel2'},seconds(5.5),seconds(7.3));
```

#### **Read All Data in Vector Format**

Read all available data from the MDF file, returning data and time vectors.

```
mdfObj = mdf('MDFFile.mf4');
[data,time] = read(mdfObj,1,'Channel1','OutputFormat','Vector');
```

#### **Read All Data in Time Series Format**

Read all available data from the MDF file, returning time series data.

```
mdfObj = mdf('MDFFile.mf4');
data = read(mdfObj,1,'Channell','OutputFormat','TimeSeries');
```

### **Input Arguments**

mdf0bj — MDF file MDF file object

MDF file, specified as an MDF file object.

Example: mdf('MDFFile.mf4')

#### chanGroupIndex — Index of the channel group

numeric value

Index of channel group, specified as a numeric value that identifies the channel group from which to read.

Example: 1

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
```

#### chanName - Name of channel

char vector | string

Name of channel, specified as a character vector, string, or array. chanName identifies the name of a channel in the channel group. Use a cell array of character vectors or array of string to identify multiple channels.

Example: 'Channel1' Data Types: char | string | cell

#### startPosition — First position of channel data

numeric value | duration

First position of channel data, specified as a numeric value or duration. The startPosition option specifies the first position from which to read channel data.
Provide a numeric value to specify an index position; use a duration to specify a time
position. If only startPosition is provided without the endPosition option, the data
value at that location is returned. When used with endPosition to specify a range, the
function returns data from the startPosition (inclusive) to the endPosition (noninclusive).

Example: 1

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | duration

#### endPosition — Last position of channel data range

numeric value | duration

Last position of channel data range, specified as a numeric value or duration. The endPosition option specifies the last position for reading a range of channel data. Provide both the startPosition and endPosition to specify retrieval of a range of data. The function returns up to but not including endPosition when reading a range. Provide a numeric value to specify an index position; use a duration to specify a time position.

Example: 1000

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | duration
```

#### fmtType — Format for output data

'Timetable' (default) | 'Vector' | 'TimeSeries'

Format for output data, specified as a character vector or string. This option formats the output according to the following table.

| OutputFormat | Description                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 'Timetable'  | Return a timetable from one or more channels into one output<br>variable. This is the only format allowed when reading from<br>multiple channels at the same time. (Default.)                                                                                                                                                                                                                                                   |
|              | Note: The timetable format includes columns for the MDF channels. Because the column titles must be valid MATLAB identifiers, they might not be exactly the same as those values in the MDF object ChannelNames property. The column headers are derived from the property using the function matlab.lang.makeValidName. The original channel names are available in the VariableDescriptions property of the timetable object. |
| 'Vector'     | Return a vector of numeric data values, and optionally a vector of<br>time values from one channel. Use one output variable to return<br>only data, or two output variables to return both data and time<br>vectors.                                                                                                                                                                                                            |
| 'TimeSeries' | Return a time series of data from one channel.                                                                                                                                                                                                                                                                                                                                                                                  |

Example: 'Vector'

Data Types: char | string

### **Output Arguments**

#### data — Channel data

timetable (default) | double | time series | cell array

Channel data, returned as vector of doubles, a time series, a timetable, or cell array of timetables, according to the 'OutputFormat' option setting and the number of channel groups.

#### time — Channel data times

double

Channel data times, returned as a vector of double elements. The time vector is returned only when the 'OutputFormat' is set to 'Vector'.

### See Also

Functions
mdf|saveAttachment

### Topics

"Time Series" (MATLAB) "Represent Dates and Times in MATLAB" (MATLAB) "Tables" (MATLAB)

#### Introduced in R2016b

### saveAttachment

Save attachment from MDF file

### **Syntax**

```
saveAttachment(mdf0bj,AttachmentName)
saveAttachment(mdf0bj,AttachmentName,DestFile)
```

### Description

saveAttachment(mdfObj,AttachmentName) saves the specified attachment from the MDF file to the current MATLAB working folder. The attachment is saved with its existing name.

**Note** This function is supported only on 64-bit Windows operating systems.

saveAttachment(mdfObj,AttachmentName,DestFile) saves the specified attachment from the MDF file to the given destination. You can specify relative or absolute paths to place the attachment in a specific folder.

## **Examples**

#### Save Attachment with Original Name

Save an MDF file attachment with its original name in the current folder.

```
mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext')
```

#### Save Attachment with New Name

Save an MDF file attachment with a new name in the current folder.

```
mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','MyFile.ext')
```

#### Save Attachment in Parent Folder

Save an MDF file attachment in a folder specified with a relative path name, in this case in the parent of the current folder.

```
mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','..\MyFile.ext')
```

#### Save Attachment in Specified Folder

This example saves an MDF file attachment using an absolute path name.

```
mdfObj = mdf('MDFFile.mf4');
saveAttachment(mdfObj,'AttachmentName.ext','C:\MyDir\MyFile.ext')
```

### **Input Arguments**

mdf0bj — MDF file MDF file object

MDF file, specified as an MDF file object.

Example: mdf('MDFFile.mf4')

#### AttachmentName — MDF file attachment name

char vector | string

MDF file attachment name, specified as a character vector or string. The name of the attachment is available in the Name field of the MDF file object Attachment property.

Example: 'file1.dbc'

Data Types: char | string

#### DestFile — Destination file name for the saved attachment

existing attachment name (default) | char vector | string

Destination file name for the saved attachment, specified as a character vector or string. The specified destination can include an absolute or relative path, otherwise the attachment is saved in the current folder.

Example: 'MyFile.ext' Data Types: char|string

### See Also

Functions mdf | read

Introduced in R2016b

### mdfDatastore

Datastore for collection of MDF files

### **Syntax**

```
mdfds = mdfDatastore(location)
mdfds = mdfDatastore(__,'Name1',Value1,'Name2',Value2,...)
```

### Description

mdfds = mdfDatastore(location) creates an MDFDatastore based on an MDF file
or a collection of files in the folder specified by location. All files in the folder with
extensions .mdf, .dat, or .mf4 are included.

mdfds = mdfDatastore(\_\_, 'Name1', Value1, 'Name2', Value2, ...) specifies
function options and properties of mdfds using optional name-value pairs.

### **Examples**

#### **Create an MDF Datastore**

Create an MDF datastore from the sample file CANape.MF4, and read it into a timetable.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
while hasdata(mdfds)
    m = read(mdfds);
end
```

### **Input Arguments**

```
location — Location of MDF datastore files
character vector | cell array
```

Location of MDF datastore files, specified as a character vector or cell array of character vectors, identifying either files or folders. The path can be relative or absolute, and can contain the wildcard character \*. If location specifies a folder, the datastore includes by default all files in that folder with extensions .mdf, .dat, or .mf4.

```
Example: 'CANape.MF4'
Data Types: char | cell
```

### **Name-Value Pair Arguments**

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'SelectedChannelNames', 'Counter\_B4'

#### IncludeSubfolders — Include files in subfolders

false (default) | true

Include files in subfolders, specified as a logical. Specify true to include files in each folder and recursively in subfolders.

Example: true

Data Types: logical

FileExtensions — Custom extensions for filenames to include in MDF datastore
{'.mdf','.dat','.mf4'} (default) | char | cell

Custom extensions for filenames to include in the MDF datastore, specified as a character vector or cell array of character vectors. By default, the extensions supported include .mdf, .dat, and .mf4. If your files have custom or nonstandard extensions, use this Name-Value setting to include files with those extensions.

```
Example: {'.myformat1','.myformat2'}
Data Types: char | cell
```

#### ReadSize — Size of data returned by read

'file' (default) | numeric | duration

Size of data returned by read, specified as 'file', a numeric value, or a duration. A character vector value of 'file' causes the entire file to be read; a numeric double

value specifies the number of records to read; and a duration value specifies a time range to read.

If you subsequently change the ReadSize property value type, the datastore resets.

Example: 50

Data Types: double | char | duration

#### SelectedChannelNames — Names of channels to read

char | string | cell

Names of channels to read, specified as a character vector, string, or cell array.

Example: 'Counter\_B4' Data Types: char | string | cell

#### SelectedChannelGroupNumber — Channel group to read

numeric scalar

Channel group to read, specified as a numeric scalar value.

Example: 1

```
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
```

### **Output Arguments**

#### mdfds — MDF datastore

MDFDatastore object

MDF datastore returned as an MDFDatastore object, with the following methods and properties.

| Method  | Purpose                                                                                                                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------|
| preview | Read eight rows from start of datastore<br>(first file), from the selected channel group<br>number and selected channel names |
| read    | Read subset of data from datastore                                                                                            |

| Method        | Purpose                                  |
|---------------|------------------------------------------|
| readall       | Read all data from datastore             |
| hasdata       | True if more data available in datastore |
| reset         | Reset datastore to start of data         |
| partition     | Part of original datastore               |
| numpartitions | Estimate for number of partitions to use |

| Property                   | Purpose                                                  |
|----------------------------|----------------------------------------------------------|
| Files                      | Files included in datastore                              |
| ReadSize                   | Size of data returned by read                            |
| ChannelGroups              | All channel groups present in first MDF file (read-only) |
| Channels                   | All channels present in first MDF file (read-<br>only)   |
| SelectedChannelGroupNumber | Channel group currently selected                         |
| SelectedChannelNames       | Channels currently selected                              |

## See Also

#### Functions

hasdata | numpartitions | partition | preview | read | readall | reset

### Introduced in R2017b

## hasdata (MDFDatastore)

Determine if data is available to read from MDF datastore

### Syntax

tf = hasdata(mdfds)

## Description

tf = hasdata(mdfds) returns logical 1 (true) if there is data available to read from the MDF datastore specified by mdfds. Otherwise, it returns logical 0 (false).

## **Examples**

### **Check MDF Datastore for Readable Data**

Use hasdata in a loop to control read iterations.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
while hasdata(mdfds)
    m = read(mdfds);
end
```

## **Input Arguments**

### mdfds — MDF datastore

MDF datastore object

#### MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

## **Output Arguments**

tf — Indicator of data to read 1 | 0

Indicator of data to read, returned as a logical 1 (true) or false (0).

## See Also

Functions
mdfDatastore | read | readall | reset

Introduced in R2017b

## numpartitions (MDFDatastore)

Number of partitions for MDF datastore

### Syntax

```
N = numpartitions(mdfds)
```

N = numpartitions(mdfds,pool)

### Description

N = numpartitions(mdfds) returns the recommended number of partitions for the MDF datastore mdfds. Use the result as an input to the partition function.

N = numpartitions(mdfds, pool) returns a reasonable number of partitions to parallelize mdfds over the parallel pool, pool, based on the number of files in the datastore and the number of workers in the pool.

### **Examples**

#### Find Recommended Number of Partitions for MDF Datastore

Determine the number of partitions you should use for your MDF datastore.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
N = numpartitions(mdfds);
```

## **Input Arguments**

### mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

Example: mdfds = mdfDatastore('CANape.MF4')

pool — Parallel pool parallel pool object

Parallel pool specified as a parallel pool object.

Example: gcp

### **Output Arguments**

### **N** — Number of partitions

double

Number of partitions, returned as a double. This number is the calculated recommendation for the number of partitions for your MDF datastore. Use this when partitioning your datastore with the partition function.

### See Also

Functions
mdfDatastore|partition|read|reset

Introduced in R2017b

## partition (MDFDatastore)

Partition MDF datastore

### Syntax

```
subds = partition(mdfds,N,index)
subds = partition(mdfds,'Files',index)
subds = partition(mdfds,'Files',filename)
```

### Description

subds = partition(mdfds, N, index) partitions the MDF datastore mdfds into the number of parts specified by N, and returns the partition corresponding to the index index.

subds = partition(mdfds, 'Files', index) partitions the MDF datastore by files
and returns the partition corresponding to the file of index in the Files property.

subds = partition(mdfds,'Files',filename) partitions the datastore by files and returns the partition corresponding to the specified filename.

### **Examples**

#### Partition an MDF Datastore into Default Parts

Partition an MDF datastore from the sample file CANape.MF4, and return the first part.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
N = numpartitions(mdfds);
subds1 = partition(mdfds,N,1);
```
#### Partition an MDF Datastore by Its Files

Partition an MDF datastore according to its files, and return partitions by index and file name.

```
cd c:\temp
mdfds = mdfDatastore({'CANape1.MF4','CANape2.MF4','CANape3.MF4'});
mdfds.Files
ans =
    3×1 cell array
    'c:\temp\CANape1.MF4'
    'c:\temp\CANape2.MF4'
    'c:\temp\CANape3.MF4'
subds2 = partition(mdfds,'files',2);
subds3 = partition(mdfds,'files','c:\temp\CANape3.MF4');
```

### **Input Arguments**

#### mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

#### N — Number of partitions

positive integer

Number of partitions, specified as a double of positive integer value. Use the numpartitions function for the recommended number or partitions.

```
Example: numpartitions(mdfds)
```

Data Types: double

#### index — Index

positive integer

Index, specified as a double of positive integer value. When using the 'files' partition scheme, this value corresponds to the index of the MDF datastore object Files property.

Example: 1

Data Types: double

filename — File name
character vector

File name, specified as a character vector. The argument can specify a relative or absolute path.

Example: 'CANape.MF4' Data Types: char

## **Output Arguments**

#### subds — MDF datastore partition

MDF datastore object

MDF datastore partition, returned as an MDF datastore object. This output datastore is of the same type as the input datastore mdfds.

### See Also

Functions
mdfDatastore|numpartitions|read|reset

## preview (MDFDatastore)

Subset of data from MDF datastore

## Syntax

```
data = preview(mdfds)
```

## Description

data = preview(mdfds) returns a subset of data from MDF datastore mdfds without
changing the current position in the datastore.

## **Examples**

#### **Examine Preview of MDF Datastore**

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
data = preview(mdfds)
```

data2 =

10×74 timetable

| Counter_B4 | Counter_B5                                        | Counter_B6                                                                                                                                                                                                                                                                                            | Counter_B7                                                                                                                                                                                                                                                                                                                                       | PWM                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                   |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Θ          | Θ                                                 | 1                                                                                                                                                                                                                                                                                                     | Θ                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ          | Θ                                                 | 1                                                                                                                                                                                                                                                                                                     | Θ                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ          | Θ                                                 | 1                                                                                                                                                                                                                                                                                                     | Θ                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ          | Θ                                                 | 1                                                                                                                                                                                                                                                                                                     | Θ                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ          | Θ                                                 | 1                                                                                                                                                                                                                                                                                                     | Θ                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Θ          | Θ                                                 | 1                                                                                                                                                                                                                                                                                                     | Θ                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | Counter_B4<br><br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Counter_B4         Counter_B5           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 | Counter_B4         Counter_B5         Counter_B6           0         0         1           0         0         1           0         0         1           0         0         1           0         0         1           0         0         1           0         0         1           0         0         1           0         0         1 | Counter_B4         Counter_B5         Counter_B6         Counter_B7           0         0         1         0           0         0         1         0           0         0         1         0           0         0         1         0           0         0         1         0           0         0         1         0           0         0         1         0           0         0         1         0           0         0         1         0 |

| 0.060826 sec | Θ | Θ | 1 | Θ | 100 |
|--------------|---|---|---|---|-----|
| 0.070826 sec | Θ | Θ | 1 | Θ | 100 |

### **Input Arguments**

#### mdfds — MDF datastore

MDF datastore object

MDF datastore, specified as an MDF datastore object.

Example: mdfds = mdfDatastore('CANape.MF4')

### **Output Arguments**

data — Subset of data timetable

Subset of data, returned as a timetable of MDF records.

### See Also

Functions
hasdata|mdfDatastore|read

## read (MDFDatastore)

Read data in MDF datastore

### Syntax

```
data = read(mdfds)
[data,info] = read(mdfds)
```

### Description

data = read(mdfds) returns data from the MDF datastore mdfds into the timetable
data.

The read function returns a subset of data from the datastore. The size of the subset is determined by the ReadSize property of the datastore object. On the first call, read starts reading from the beginning of the datastore, and subsequent calls continue reading from the endpoint of the previous call. Use reset to read from the beginning again.

[data,info] = read(mdfds) also returns to the output argument info information, including metadata, about the extracted data.

### **Examples**

#### **Read Datastore by Files**

Read data from an MDF datastore one file at a time.

```
mdfds = mdfDatastore({'CANape1.MF4', 'CANape2.MF4', 'CANape3.MF4'});
mdfds.ReadSize = 'file';
data = read(mdfds);
```

Read the second file and view information about the data.

```
[data2,info2] = read(mdfds);
info2
```

```
struct with fields:
Filename: 'CANape2.MF4'
FileSize: 57592
MDFFileProperties: [1×1 struct]
```

### **Input Arguments**

mdfds — MDF datastore MDF datastore object

MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

## **Output Arguments**

data — Output data timetable

Output data, returned as a timetable of MDF records.

#### info — Information about data

structure array

Information about data, returned as a structure array with the following fields:

Filename FileSize MDFFileProperties

## See Also

```
Functions
hasdata | mdfDatastore | preview | readall | reset
```

# readall (MDFDatastore)

Read all data in MDF datastore

## Syntax

```
data = readall(mdfds)
```

## Description

data = readall(mdfds) reads all the data in the datastore specified by mdfds and returns it to timetable data.

After the readall function returns all the data, it resets mdfds to point to the beginning of the datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

### **Examples**

#### **Read All Data in Datastore**

Read all the data from a multiple file MDF datastore into a timetable.

```
mdfds = mdfDatastore({'CANape1.MF4', 'CANape2.MF4', 'CANape3.MF4'});
data = readall(mdfds);
```

## **Input Arguments**

mdfds — MDF datastore MDF datastore object

MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

## **Output Arguments**

#### data — Output data

timetable

Output data, returned as a timetable of MDF records.

## See Also

Functions
hasdata|mdfDatastore|preview|read|reset

# reset (MDFDatastore)

Reset MDF datastore to initial state

## Syntax

reset(mdfds)

### Description

reset(mdfds) resets the MDF datastore specified by mdfds to its initial read state, where no data has been read from it. Resetting allows your to reread from the same datastore.

## **Examples**

#### **Reset MDF Datastore**

Reset an MDF datastore so that you can read from it again.

```
mdfds = mdfDatastore(fullfile(matlabroot,'examples','vnt','CANape.MF4'));
data = read(mdfds);
reset(mdfds);
data = read(mdfds);
```

## **Input Arguments**

mdfds — MDF datastore MDF datastore object

MDF datastore, specified as an MDF datastore object.

```
Example: mdfds = mdfDatastore('CANape.MF4')
```

### See Also

Functions
hasdata | mdfDatastore | read